Advertisements
Advertisements
प्रश्न
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
उत्तर
`|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Put x = 0
`|(4 - 0, 4 + 0, 4 + 0),(4 + 0, 4 - 0, 4 + 0),(4 + 0, 4 + 0, 4 - 0)|` = 0
`|(4, 4, 4),(4, 4, 4),(4, 4, 4)|` = 0
0 = 0
∴ x = 0 satisfies the given equation.
Hence x = 0 is a root of the given equation.
Since three rows are identical, x = 0 is a root of multiplicity 2.
Since the degree of the product of the leading diagonal elements (4 – x)(4 – x)(4 – x) is 3.
There is one more root for the given equation.
`|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
`"C"_1 -> "C"_1 + "C"_2 + "C"_3`
`|(4 - x + 4 + x + 4 + x, 4 + x, 4 + x),(4 + x + 4 - x + 4 + x, 4 - x, 4 + x),(4 + x + 4 + x + 4 - x, 4 + x, 4 - x)|` = 0
`|(12 + x, 4 + x, 4 + x),(12 + x, 4 - x, 4 + x),(12 + x, 4 + x, 4 - x)|` = 0
Put x = – 12
`|(12 - 12, 4 - 12, 4 - 12),(12 - 12, 4 + 12, 4 - 12),(12 - 12, 4 - 12, 4 + 12)|` = 0
`|(0, -8, -8),(0, 16, -8),(0, -8, 16)|` = 0
0 = 0
∴ x = – 12 is a root of the given equation.
Hence, the required roots are x = 0, 0, – 12
APPEARS IN
संबंधित प्रश्न
Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0
If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0
If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|
Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`
Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
Determine the values of a and b so that the following matrices are singular:
A = `[(7, 3),(-2, "a")]`
Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`
Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are
The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,
If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x
What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|`
Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).
Choose the correct option:
Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then
For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.
Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`
Then the number of non-singular matrices in the set S is ______.