Advertisements
Advertisements
Question
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Solution
`|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Put x = 0
`|(4 - 0, 4 + 0, 4 + 0),(4 + 0, 4 - 0, 4 + 0),(4 + 0, 4 + 0, 4 - 0)|` = 0
`|(4, 4, 4),(4, 4, 4),(4, 4, 4)|` = 0
0 = 0
∴ x = 0 satisfies the given equation.
Hence x = 0 is a root of the given equation.
Since three rows are identical, x = 0 is a root of multiplicity 2.
Since the degree of the product of the leading diagonal elements (4 – x)(4 – x)(4 – x) is 3.
There is one more root for the given equation.
`|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
`"C"_1 -> "C"_1 + "C"_2 + "C"_3`
`|(4 - x + 4 + x + 4 + x, 4 + x, 4 + x),(4 + x + 4 - x + 4 + x, 4 - x, 4 + x),(4 + x + 4 + x + 4 - x, 4 + x, 4 - x)|` = 0
`|(12 + x, 4 + x, 4 + x),(12 + x, 4 - x, 4 + x),(12 + x, 4 + x, 4 - x)|` = 0
Put x = – 12
`|(12 - 12, 4 - 12, 4 - 12),(12 - 12, 4 + 12, 4 - 12),(12 - 12, 4 - 12, 4 + 12)|` = 0
`|(0, -8, -8),(0, 16, -8),(0, -8, 16)|` = 0
0 = 0
∴ x = – 12 is a root of the given equation.
Hence, the required roots are x = 0, 0, – 12
APPEARS IN
RELATED QUESTIONS
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
If a, b, c, are all positive, and are pth, qth and rth terms of a G.P., show that `|(log"a", "p", 1),(log"b", "q", 1),(log"c", "r", 1)|` = 0
Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1
If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)`
Without expanding, evaluate the following determinants:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
If A is a Square, matrix, and |A| = 2, find the value of |A AT|
Verify that det(AB) = (det A)(det B) for A = `[(4, 3, -2),(1, 0, 7),(2, 3, -5)]` and B = `[(1, 3, 3),(-2, 4, 0),(9, 7, 5)]`
Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
Identify the singular and non-singular matrices:
`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`
Choose the correct alternative:
If `|(2"a", x_1, y_1),(2"b", x_2, y_2),(2"c", x_3, y_3)| = "abc"/2 ≠ 0`, then the area of the triangle whose vertices are `(x_1/"a", y_1/"a"), (x_2/"b", y_2/"b"), (x_3/"c", y_3/"c")` is
Choose the correct alternative:
if Δ = `|("a", "b", "c"),(x, y, z),("p", "q", "r")|` then `|("ka", "kb","kc"),("k"x, "k"y, "k"z),("kp", "kq", "kr")|` is
Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`
The remainder obtained when 1! + 2! + 3! + ......... + 10! is divided by 6 is,
If P1, P2, P3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then `cosA/P_1 + cosB/P_2 + cosC/P_3` is equal to
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
Let S = `{((a_11, a_12),(a_21, a_22)): a_(ij) ∈ {0, 1, 2}, a_11 = a_22}`
Then the number of non-singular matrices in the set S is ______.