Advertisements
Advertisements
Question
Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
Solution
Let |A| = `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|`
Put a = b in |A|
|A| = `|("b" + "c", "b", "b"^2),("c" + "b", "b", "b"^2),("b" + "b", "c", "c"^2)|`
|A| = `|("b" + "c", "b", "b"^2),("b" + "c", "b", "b"^2),("b" + "b", "c", "c"^2)|`
Since two rows are idenctical
|A| = 0
Since two rows are idenctical
|A| = 0
∴ a – b is a factor of |A|.
The given determinant is in cyclic symmetric form in a, b and c.
Therefore, b – c and c – a are also factors.
The degree of the product of the factors (a – b)(b – c)(c – a) is 3 and the degree of the product of the leading diagonal elements (b + c) . b . c2 is 4.
Therefore, the other factor is k(a + b + c).
`|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = k(a + b + c)(a – b) × (b – c)(c – a)
Put a = 1, b = 2, c = 3 we get
`|(2 +3, 1, 1^2),(3 + 1, 2, 2^2),(1 + 2, 3, 3^2)|` = k(1 + 2 + 3)(1 – 2) × (2 – 3)(3 – 1)
`|(5, 1, 1),(4, 2, 4),(3, 3, 9)|` = k × 6 × –1 × –1 × 2
5(18 – 12) – 1(36 – 12) + 1(12 – 6) = 12k
5 × 6 – 24 + 6 = 12k
30 – 24 + 6 = 12k
12 = 12
⇒ k = 1
∴ `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)
APPEARS IN
RELATED QUESTIONS
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
Prove that `|(sec^2theta, tan^2theta, 1),(tan^2theta, sec^2theta, -1),(38, 36, 2)|` = 0
Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0
If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`
If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|
Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0
Show that `|("b" + "c", "a" - "c", "a" - "b"),("b" - "c", "c" + "a", "b" - "a"),("c" - "b", "c" - "a", "a" + b")|` = 8abc
Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0
Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)
Identify the singular and non-singular matrices:
`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`
Identify the singular and non-singular matrices:
`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`
Choose the correct alternative:
The value of x, for which the matrix A = `[("e"^(x - 2), "e"^(7 + x)),("e"^(2 + x), "e"^(2x + 3))]` is singular
If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x
For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.
If a, b, c are positive and are the pth, qth and rth terms respectively of a G.P., then the value of `|(loga, p, 1),(logb, q, 1),(logc, r, 1)|` is ______.
If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to ______.