English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Prove that abcabcabc|1+a1111+b1111+c|=abc(1+1a+1b+1c) - Mathematics

Advertisements
Advertisements

Question

Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`

Sum

Solution

Let Δ = `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")|`

Δ = `|("a", 0, -"c"),(0, "b", -"c"),(1, 1, 1 + "c")|  {:("R"_1 -> "R"_1 - "R"_3),("R"_2 -> "R"_2 - "R"_3):}`

= a[b(1 + c) + c(1)] – 0 – c[0 – b]

= a[b + bc + c] + bc

= ab + abc + ac + bc

= abc + ab + bc + ac

= abc

`["abc"/"abc" + "ab"/"abc" + "bc"/"abc" + "ac"/"abc"] = "abc" [1 + 1/"c" + 1/"a" + 1/"b"]`

Δ = `"abc" [1 + 1/"a" + 1/"b" + 1/"c"]``

shaalaa.com
Determinants
  Is there an error in this question or solution?
Chapter 7: Matrices and Determinants - Exercise 7.2 [Page 29]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 7 Matrices and Determinants
Exercise 7.2 | Q 4 | Page 29

RELATED QUESTIONS

Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0


Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`


Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1


If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)` 


If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`


Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0


Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`


Solve the following problems by using Factor Theorem:

Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)


Solve `|(4 - x, 4 + x, 4 +  x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0


Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)


Identify the singular and non-singular matrices:

`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`


Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to


Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`


If Δ is the area and 2s the sum of three sides of a triangle, then


A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the


For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.


If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×