Advertisements
Advertisements
Question
Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`
Solution
Let Δ = `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")|`
Δ = `|("a", 0, -"c"),(0, "b", -"c"),(1, 1, 1 + "c")| {:("R"_1 -> "R"_1 - "R"_3),("R"_2 -> "R"_2 - "R"_3):}`
= a[b(1 + c) + c(1)] – 0 – c[0 – b]
= a[b + bc + c] + bc
= ab + abc + ac + bc
= abc + ab + bc + ac
= abc
`["abc"/"abc" + "ab"/"abc" + "bc"/"abc" + "ac"/"abc"] = "abc" [1 + 1/"c" + 1/"a" + 1/"b"]`
Δ = `"abc" [1 + 1/"a" + 1/"b" + 1/"c"]``
APPEARS IN
RELATED QUESTIONS
Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0
Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0
Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`
Find the value of `|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` if x, y, z ≠ 1
If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)`
If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`
Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0
Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`
Solve the following problems by using Factor Theorem:
Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)
Solve `|(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0
Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)
Identify the singular and non-singular matrices:
`[(2, -3, 5),(6, 0, 4),(1, 5, -7)]`
Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to
Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`
If Δ is the area and 2s the sum of three sides of a triangle, then
A pole stands vertically inside a triangular park ΔABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ΔABC the foot of the pole is at the
For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.
If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to ______.