मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Prove that abcaccaabbacabbbccabc|a2bcac+c2a2+abb2acabb2+bcc2|=4a2b2c2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)| = 4"a"^2"b"^2"c"^2`

बेरीज

उत्तर

Let Δ = `|("a"^2, "bc", "ac" + "c"^2),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)|`

Δ = `|(2"a"^2 + 2"ab", 2"b"^2 + 2"bc", 2"c"^2 + 2"ac"),("a"^2 + 2"ab", 2"b"^2 + "bc", "c"^2 + "ac"),("ab", "b"^2 + "bc", "c"^2)|  {:("R"_1 -> "R"_1 + "R"_2 + "R"_3),("R"_2 -> "R"_2 + "R"_3):}`

= `2 |("a"^2 + "ab", "b"^2 + 2"bc", "c"^2 + "ac"),("a"^2 + 2"ab", 2"b"^2 + "bc", "c"^2 + "ac"),("ab", "b"^2 + "bc", "c"^2)|`

= `2 |("a"^2 + "ab", "b"^2 + "bc", "c"^2 + "ac"),("a"^2 + "ab", "b"^2, "ac"),("ab", "b"^2 + "bc", "c"^2)|  "R"_1 -> "R"_1 - "R"_2`

= `2|(0, "bc", "c"^2),("a"^2, -"bc", "ac" - "c"^2),("ab", "b"^2 + "bc", "c"^2)|  {:("R"_1 -> "R"_1 - "R"_2),("R"_2 -> "R"_2 - "R"_3):}`

= `2|(0, "bc", "c"^2),("a"^2, 0, "ac"),("ab", "b"^2, 0)|  {:("R"_2 -> "R"_2 + "R"_1),("R"_3 -> "R"_3 - "R"_11):}`

= `2"abc" |(0, "b", "c"),("a", 0, "c"),("a", "b", 0)|`

= 2abc [0 – b(0 – ac) + c(ab – 0)]

= 2abc [abc + abc]

= 2abc × 2abc

Δ = 4a2b2c2

shaalaa.com
Determinants
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Matrices and Determinants - Exercise 7.2 [पृष्ठ २९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 7 Matrices and Determinants
Exercise 7.2 | Q 3 | पृष्ठ २९

संबंधित प्रश्‍न

Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`


Prove that `|(1, "a", "a"^2 - "bc"),(1, "b", "b"^2 - "ca"),(1, "c", "c"^2 - "ab")|` = 0


Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x


Solve the following problems by using Factor Theorem:

Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)


Show that `|("b" + "C", "a", "a"^2),("c" + "a", "b", "b"^2),("a" + "b", "c", "c"^2)|` = (a + b + c)(a – b)(b – c)(c – a)


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


Determine the values of a and b so that the following matrices are singular:

A = `[(7, 3),(-2, "a")]`


Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are


Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to


Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is


Choose the correct alternative:
If ⌊.⌋ denotes the greatest integer less than or equal to the real number under consideration and – 1 ≤ x < 0, 0 ≤ y < 1, 1 ≤ z ≤ 2, then the value of the determinant `[([x] + 1, [y], [z]),([x], [y] + 1, [z]),([x], [y], [z] + 1)]`


If Δ is the area and 2s the sum of three sides of a triangle, then


What is the value of Δ if, Δ = `|(0, sin alpha, - cos alpha),(-sin alpha, 0, sin beta),(cos alpha, - sin beta, 0)|` 


Choose the correct option:

Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then


If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×