मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Solve the following problems by using Factor Theorem: Show that aaaaaa|xaaaxaaax| = (x – a)2 (x + 2a) - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following problems by using Factor Theorem:

Show that `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)

बेरीज

उत्तर

Let |A| = `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|`

Pt x = a in |A|, we get

|A| = `|("a", "a", "a"),("a", "a", "a"),("a", "a", "a")|`

By putting x = a , we have three rows of |A| are identical.

Therefore (x – a)2 is a factor of |A|

Put x = – 2a in |A|

|A| = `|(-2"a" + "a", "a"),("a", -2"a", "a"),("a", "a", -2"a")|`

= `|(-2"a" + "a" + "a", "a", "a"),("a" - 2"a" + "a", -2"a", "a"),("a" + "a" - 2"a","a", -2"a")|`

= `|(0, "a", "a"),(0, -2"a", "a"),(0, "a", -2"a")|`

∴ x + 2a is a factor of |A|. The degree of the product of the factors (x – a)2 (x + 2a) is 3.

The degree of tfie product of the leading diagonal elements x . x . x is 3.

∴ The other factor is the contant factor k.

∴ `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|  "k"(x - "a")^2 (x + 2"a")`

Put x = – a

`|(-"a", "a", "a"),("a", , "a"),("a", "a", - "a")| =  "k"(- "a" - "a")^2 (- "a" + 2a")`

`"a"^3 |(-1, 1, 1),(1, -1, 1),(1, 1, -1)| = "k" xx 4"a"^2 xx "a"`

a3 [– 1(1 – 1) – 1( – 1 – 1) + 1(1 + 1)] = k . 4a3

a3 [0 + 2 + 2 ] = 4 ka3

4a3 = 4ka3

k = 1

∴  `|(x, "a", "a"),("a", x, "a"),("a", "a", x)|` = (x – a)2 (x + 2a)

shaalaa.com
Determinants
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Matrices and Determinants - Exercise 7.3 [पृष्ठ ३४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 7 Matrices and Determinants
Exercise 7.3 | Q 1 | पृष्ठ ३४

संबंधित प्रश्‍न

Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


Write the general form of a 3 × 3 skew-symmetric matrix and prove that its determinant is 0


Show that `|("a"^2 + x^2, "ab", "ac"),("ab", "b"^2 + x^2, "bc"),("ac", "bc", "c"^2 + x^2)|` is divisiible by x


If A and B are square matrices of order 3 such that |A| = –1 and |B| = 3, find the value of |3AB|


Using cofactors of elements of second row, evaluate |A|, where A = `[(5, 3, 8),(2, 0, 1),(1, 2, 3)]`


Solve that `|(x + "a", "b", "c"),("a", x + "b", "c"),("a", "b", x + "c")|` = 0


Solve `|(4 - x, 4 + x, 4 +  x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)|` = 0


Identify the singular and non-singular matrices:

`[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`


If cos 2θ = 0, determine  `[(theta, costheta, sintheta),(costheta, sintheta, 0),(sintheta, 0, costheta)]^2`


Find the value of the product: `|(log_3 64, log_4 3),(log_3 8, log_4 9)| xx |(log_2 3, log_8 3),(log_3 4, log_3 4)|`


Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are


Choose the correct alternative:
If A = `[("a", x),(y, "a")]` and if xy = 1, then det(AAT) is equal to


Choose the correct alternative:
The value of the determinant of A = `[(0, "a", -"b"),(-"a", 0, "c"),("b", -"c", 0)]` is


Find the area of the triangle with vertices at the point given is (1, 0), (6, 0), (4, 3).


`|("b" + "c", "c", "b"),("c", "c" + "a", "a"),("b", "a", "a" + "b")|` = ______.


If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.


If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×