मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Determine the roots of the equation |14201-2512x5x2| = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Determine the roots of the equation `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)|` = 0

बेरीज

उत्तर

Now `|(1,4, 20),(1, -2, 5),(1, 2x, 5x^2)| = (5)|(1, 4, 4),(1, -2, 1),(1, 2x, x^2)|`

Taking 5 as a common factor from C3

= `(5)(2)|(1, 2, 4),(1, -1, 1),(1, x, x^2)|`

Taking 2 as a common factor from C2 

= `10|(1, 2, 4),(1, -1, 1),(1, x, x^2)|`

= `10|(0, 3,3),(0, -1 - x, 1 - x^2),(1, x, x^2)|  {:("R"_1 -> "R"_1 - "R"_2),("R"_2 -> "R"_2 - "R"_3):}`

Expanding along C1

`101[3(1 - x^2) - (- 1 - x)(3)]}`

= 10[3(1 – x2) + 3(1 + x)]

= 10[3(1 + x)(1 – x) + 3(1 + x)]

= 10[3(1 + x)(1 – x + 1)]

= 30(1 +x)(2 – x)

Given the determinant value is 0

⇒ 30(1 + x)(2 – x) = 0

⇒ 1 + x = 0 or 2 – x = 0

⇒ x = – 1 or x = 2

So, x = – 1 or 2.

shaalaa.com
Determinants
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Matrices and Determinants - Exercise 7.2 [पृष्ठ ३०]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 7 Matrices and Determinants
Exercise 7.2 | Q 19 | पृष्ठ ३०

संबंधित प्रश्‍न

Without expanding the determinant, prove that `|("s", "a"^2, "b"^2 + "c"^2),("s", "b"^2, "c"^2 + "a"^2),("s", "c"^2, "a"^2 + "b"^2)|` = 0


Show that `|("b" + "c", "bc", "b"^2"C"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


Prove that `|(1 + "a", 1, 1),(1, 1 + "b", 1),(1, 1, 1 + "c")| = "abc"(1 + 1/"a" + 1/"b" + 1/"c")`


Show that `|(x + 2"a", y + 2"b", z + 2"c"),(x, y, z),("a", "b", "c")|` = 0


If `|("a", "b", "a"alpha + "b"),("b", "c", "b"alpha + "c"),("a"alpha + "b", "b"alpha + "c", 0)|` = 0, prove that a, b, c are in G. P or α is a root of ax2 + 2bx + c = 0


If a, b, c are pth, qth and rth terms of an A.P, find the value of `|("a", "b", "c"),("p", "q", "r"),(1, 1, 1)|`


If A = `[(1/2, alpha),(0, 1/2)]`, prove that `sum_("k" = 1)^"n" det("A"^"k") = 1/3(1 - 1/4)` 


Without expanding, evaluate the following determinants:

`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|`


If λ = – 2, determine the value of `|(0, lambda, 1),(lambda^2, 0, 3lambda^2 + 1),(-1, 6lambda - 1, 0)|`


Show that `|(1, 1, 1),(x, y, z),(x^2, y^2, z^2)|` = (x – y)(y – z)(z – x)


Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)


Identify the singular and non-singular matrices:

`[(0, "a" - "b", "k"),("b" - "a", 0, 5),(-"k", -5, 0)]`


Determine the values of a and b so that the following matrices are singular:

B = `[("b" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


If cos 2θ = 0, determine  `[(theta, costheta, sintheta),(costheta, sintheta, 0),(sintheta, 0, costheta)]^2`


Choose the correct alternative:
If A = `[(1, -1),(2, -1)]`, B = `[("a", 1),("b", -1)]` and (A + B)2 = A2 + B2, then the values of a and b are


Choose the correct alternative:
If `|(2"a", x_1, y_1),(2"b", x_2, y_2),(2"c", x_3, y_3)| = "abc"/2 ≠ 0`, then the area of the triangle whose vertices are `(x_1/"a", y_1/"a"), (x_2/"b", y_2/"b"), (x_3/"c", y_3/"c")` is


Choose the correct alternative:
If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are


If Δ is the area and 2s the sum of three sides of a triangle, then


If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x


If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×