हिंदी

Draw a cumulative frequency curve (ogive) for the following distributions: Class Interval 10 – 19 20 – 29 30 – 39 40 – 49 50 – 59 Frequency 23 16 15 20 12 - Mathematics

Advertisements
Advertisements

प्रश्न

Draw a cumulative frequency curve (ogive) for the following distributions:

Class Interval  10 – 19 20 – 29 30 – 39 40 – 49 50 – 59
Frequency 23 16 15 20 12
आलेख

उत्तर

The above distribution is discontinuous converting into continuous distribution, we get:

Adjustment factor = `("Lower limit of one class" - "Upper limit of previous class") / 2`

= `(20 - 19)/2`

= `1/2`

= 0.5

Subtract the adjustment factor (0.5) from all the lower limits and add the adjustment factor (0.5) to all the upper limits.

Class Interval (Inclusive) Class Interval (Exclusive) Frequency Cumulative Frequency 
10 – 19 9.5 – 19.5 23  23
20 – 29 19.5 – 29.5 16 39
30 – 39 29.5 – 39.5 15 54
40 – 49 39.5 – 49.5 20 74
50 – 59 49.5 – 59.5  12 86
    Total  86  

Steps of construction of ogive:

  1. Since, the scale on x-axis starts at 9.5, a break (kink) is shown near the origin on x-axis to indicate that the graph is drawn to scale beginning at 9.5.
  2. Take 2 cm = 10 units along the x-axis.
  3. Take 1 cm = 10 units along the y-axis.
  4. Ogive always starts from a point on the x-axis, representing the lower limit of the first class. Mark point (9.5, 0).
  5. Take upper-class limits along the x-axis and corresponding cumulative frequencies along the y-axis, and mark the points (19.5, 23), (29.5, 39), (39.5, 54), (49.5, 74) and (59.5, 86).
  6. Join the points marked by a free-hand curve.

The required ogive is shown in the below figure:

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Graphical Representation - Exercise 23 [पृष्ठ ३४८]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 23 Graphical Representation
Exercise 23 | Q 2.2 | पृष्ठ ३४८

संबंधित प्रश्न

The weight of 50 workers is given below:

Weight in Kg 50-60 60-70 70-80 80-90 90-100 100-110 110-120
No. of Workers 4 7 11 14 6 5 3

Draw an ogive of the given distribution using a graph sheet. Take 2 cm = 10 kg on one axis and 2 cm = 5 workers along the other axis. Use a graph to estimate the following:

1) The upper and lower quartiles.

2) If weighing 95 kg and above is considered overweight, find the number of workers who are overweight.


Draw an ogive by less than method for the following data:

No. of rooms: 1 2 3 4 5 6 7 8 9 10
No. of houses: 4 9 22 28 24 12 8 6 5 2

 


The marks scored by 750 students in an examination are given in the form of a frequency distribution table:

Marks No. of students
600 - 640 16
640 - 680 45
680 - 720 156
720 - 760 284
760 - 800 172
800 - 840 59
840 - 880 18

Draw an ogive to represent the following frequency distribution:

Class-interval: 0 - 4 5 - 9 10 - 14 15 - 19 20 - 24
Frequency: 2 6 10 5 3

The following table gives the height of trees:
 

Height No. of trees
Less than 7
Less than 14
Less than 21
Less than 28
Less than 35
Less than 42
Less than 49
Less than 56
26
57
92
134
216
287
341
360


Draw 'less than' ogive and 'more than' ogive.

 


Draw a cumulative frequency curve (ogive) for the following distributions:

Class Interval 10 – 15 15 – 20 20 – 25 25 – 30 30 – 35 35 – 40
Frequency 10 15 17 12 10 8

Find the correct answer from the alternatives given.

Cumulative frequencies in a grouped frequency table are useful to find ______.


Draw an ogive for the following :

Marks obtained More than 10 More than 20 More than 30 More than 40 More than 50
No. of students 8 25 38 50 67

The frequency distribution of scores obtained by 230 candidates in a medical entrance test is as ahead:

Cost of living Index Number of Months
400 - 450 20
450 - 500 35
500 - 550 40
550 - 600 32
600 - 650 24
650 - 700 27
700 - 750 18
750 - 800 34
Total  230

Draw a cummulative polygon (ogive) to represent the above data.


Use graph paper for this question. The following table shows the weights in gm of a sample of 100 potatoes taken from a large consignment:

Weight (gms) Frequency
50 - 60 8
60 - 70 10
70 - 80 12
80 - 90 16
90 - 100 18
100 - 110 14
110 - 120 12
120 - 130 10

(i) Calculate the cumulative frequencies.
(ii) Draw the cumulative frequency curve and form it determine the median weights of the potatoes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×