Advertisements
Advertisements
प्रश्न
एक A.P. में, a = 7 और a13 = 35 दिया है। d और S13 ज्ञात कीजिए।
उत्तर
दिया गया है कि, a = 7, a13 = 35
चूँकि an = a + (n − 1) d,
∴ a13 = a + (13 − 1) d
35 = 7 + 12d
35 − 7 = 12d
28 = 12d
d = `28/12`
d = `7/3`
sn = `n/2[a+a_n]`
S13 = `n/2[a+a_13]`
= `13/2[7+35]`
= `(13xx42)/2`
= 13 × 21
= 273
APPEARS IN
संबंधित प्रश्न
एक A.P. में, a = 5, d = 3 और an = 50 दिया है। n और Sn ज्ञात कीजिए।
एक A.P. में, a3 = 15 और S10 = 125 दिया है। d और a10 ज्ञात कीजिए।
एक A.P. में, d = 5 और S9 = 75 दिया है। a और a9 ज्ञात कीजिए।
एक A.P. में, a = 2, d = 8 और Sn = 90 दिया है। n और an ज्ञात कीजिए।
निर्माण कार्य से संबंधित किसी ठेके में, एक निश्चित तिथि के बाद कार्य को विलंब से पूरा करने के लिए, जुर्माना लगाने का प्रावधान इस प्रकार हैं: पहले दिन के लिए ₹ 200, दूसरे दिन के लिए ₹ 250, तीसरे दिन के लिए ₹ 300 इत्यादि, अर्थात् प्रत्येक उत्तरोत्तर दिन का जुर्माना अपने से ठीक पहले दिन के जुर्माने से ₹ 50 अधिक है। एक ठेकेदार को जुर्माने के रूप में कितनी राशि अदा करनी पड़ेगी, यदि वह इस कार्य में 30 दिन का विलंब कर देता है?
3 के प्रथम पाँच गुणजों का योग ______ है।
AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।
योग ज्ञात कीजिए :
`(a - b)/(a + b) + (3a - 2b)/(a + b) + (5a - 3b)/(a + b) + ...` 11 पदों तक
AP: –2, –7, –12,... का कौन-सा पद –77 है? पद –77 तक इस AP का योग ज्ञात कीजिए।
यदि किसी AP के प्रथम 6 पदों का योग 36 है तथा प्रथम 16 पदों का योग 256 है, तो उसके प्रथम 10 पदों का योग ज्ञात कीजिए।