हिंदी

एक चतुर्भुज ABCD के विकर्ण AC और BD एक दूसरे को P पर काटते हैं। दर्शाइए कि ar (APB) × ar (CPD) = ar (APD) × ar (BPC) है। [संकेत : A और C से BD पर लंब खींचिए।] - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

चतुर्भुज ABCD के विकर्ण AC और BD एक दूसरे को P पर काटते हैं। दर्शाइए कि ar (APB) × ar (CPD) = ar (APD) × ar (BPC) है।

[संकेत : A और C से BD पर लंब खींचिए।]

योग

उत्तर

माना AM ⊥ BD और CN ⊥ BD बनाएं

`"त्रिभुज का क्षेत्रफल "=1/2xx"आधार"xx"ऊंचाई"`

`ar(APB)xxar(CPD)=[1/2xxBPxxAM]xx[1/2xxPDxxCN]`

`=1/4xxBPxxAMxxPDxxCN`

`ar(APD)xxar(BPC)=[1/2xxPDxxAM]xx[1/2xxCNxxBP]`

                                  `=1/4xxPDxxAMxxCNxxBP`

                                  `=1/4xxBPxxAMxxPDxxCN`

∴ ar (APB) × ar (CPD) = ar (APD) × ar (BPC)

shaalaa.com
एक ही आधार और एक ही समांतर रेखाओं के बीच समांतर चतुर्भुज
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल - प्रश्नावली 9.4 (ऐच्छिक) [पृष्ठ १९९]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
अध्याय 9 समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल
प्रश्नावली 9.4 (ऐच्छिक) | Q 6. | पृष्ठ १९९

संबंधित प्रश्न

दी गई आकृति में, P एक समांतर चतुर्भुज ABCD के अभ्यंतर में स्थित कोई बिंदु है। वो दिखाओ

(i) ar (APB) + ar (PCD) = `1/2`ar (ABCD)

(ii) ar (APD) + ar (PBC) = ar (APB) + ar (PCD)

[संकेत: के माध्यम से। P, AB के समांतर एक रेखा खींचिए]


एक किसान के पास समांतर चतुर्भुज PQRS के रूप में एक खेत था। उसने RS पर कोई बिंदु A लिया और उसे बिंदु P और Q से मिला दिया। क्षेत्र को कितने भागों में विभाजित किया गया है? इन भागों के आकार क्या हैं? किसान गेहूँ और दालों को खेत के बराबर भागों में अलग-अलग बोना चाहता है। उसे कैसे करना चाहिए?


बिंदु D और E क्रमश: ΔABC कि भुजाओं AB और AC पर इस प्रकार स्थित हैं कि ar(DBC) = ar(EBC) है  दर्शाइए कि DE || BC है |


गाँव के एक निवासी इतवारी के पास एक चतुर्भुजाकार भूखंड था। उस गाँव की ग्राम पंचायत ने उसके भूखंड के एक कोने से उसका कुछ भाग लेने का निर्णय लिया ताकि वहाँ एक स्वास्थ्य केन्द्र का निर्माण कराया जा सके। इतवारी इस प्रस्ताव को इस प्रतिबन्ध् के साथ स्वीकार कर लेता है कि उसे इस भाग के बदले उसी भूखंड के संलग्न एक भाग ऐसा दे दिया जाए कि उसका भूखंड त्रिभुजाकार हो जाए। स्पष्ट कीजिए कि इस प्रस्ताव को किस प्रकार कार्यान्वित किया जा सकता है।


चतुर्भुज ABCD के विकर्ण AC और BD परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं कि ar (AOD) = ar (BOC) है सिद्ध कीजिए कि ABCD एक समलंब है |


दी गई आकृति में, ar(DRC) = ar(DPC) है और ar(BDP) = ar(ARC) है | दर्शाइए कि दोनों चतुर्भुज ABCD और DCPR समलंब है |


P और Q क्रमशः त्रिभुज ABC की भुजाओं AB और BC के मध्य-बिंदु हैं और R, रेखाखंड AP का मध्य-बिंदु है, दर्शाइए कि

(i) ar(PRQ) = `1/2` ar(ARC)

(ii) ar(RQC) = `3/8` ar(ABC)

(iii) ar(PBQ) = ar(ARC)


ABCD एक वर्ग है। E और F क्रमश : BC और CD भुजाओं के मध्य-बिंदु हैं। यदि R रेखाखंड EF का मध्य-बिंदु है (आकृति), तो सिद्ध कीजिए कि ar (AER) = ar (AFR) है।


किसी समांतर चतुर्भुज ABCD की भुजा BC पर कोई बिंदु E लिया जाता है। AE और DC को बढ़ाया जाता है जिससे वे F पर मिलती हैं। सिद्ध कीजिए कि ar (ADF) = ar (ABFC) है।


त्रिभुज ABC में यदि L और M क्रमश : AB और AC भुजाओं पर इस प्रकार स्थित बिंदु हैं कि LM || BC है। सिद्ध कीजिए कि ar (LOB) = ar (MOC) है। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×