Advertisements
Advertisements
प्रश्न
एक समकोण त्रिभुज की ऊँचाई इसके आधार से 7 cm कम है। यदि कर्ण 13 cm का हो, तो अन्य दो भुजाएँ ज्ञात कीजिए।
उत्तर
पाईथागोरस प्रमेय के प्रयोग से
`"(कर्ण)"^2 = sqrt("(ऊँचाई)"^2 + "(आधार)"^2)`
`AC^2 = sqrt(AB^2 + BC^2)`
`(13)^2 =sqrt( (x )^2 + (x - 7)^2)`
169 = x2 + (x - 7)2
169 = x2 + x2 - 14x + 49
2x2 - 14x - 120 = 0
x2 - 7x - 60 = 0
x2 - 12x + 5x - 60 = 0
x(x - 12) + 5(x - 12) = 0
(x - 12)(x + 5) = 0
या तो x - 12 = 0 या x + 5 = 0
x = 12 या x = - 5
चूँकि
समकोण त्रिभुज का आधार = x cm = 12 cm
समकोण त्रिभुज की ऊँचाई = x – 7 cm
= 12 - 7
= 5 cm
APPEARS IN
संबंधित प्रश्न
गुणनखंड विधि से निम्न द्विघात समीकरण के मूल ज्ञात कीजिए:
x2 - 3x - 10 = 0
गुणनखंड विधि से निम्न द्विघात समीकरण के मूल ज्ञात कीजिए:
2x2 + x - 6 = 0
गुणनखंड विधि से निम्न द्विघात समीकरण के मूल ज्ञात कीजिए:
`sqrt2x^2 + 7x + 5sqrt2 = 0`
गुणनखंड विधि से निम्न द्विघात समीकरण के मूल ज्ञात कीजिए:
`2x^2 - x + 1/8 = 0`
गुणनखंड विधि से निम्न द्विघात समीकरण के मूल ज्ञात कीजिए:
100x2 - 20x + 1 = 0
क्या समीकरण x2 – 0.4 = 0 का एक मूल 0.2 है? औचित्य दीजिए।
गुणनखंडन विधि से निम्नलिखित द्विघात समीकरण के मूल ज्ञात कीजिए:
`2/5x^2 - x - 3/5 = 0`
गुणनखंडन विधि से निम्नलिखित द्विघात समीकरण के मूल ज्ञात कीजिए:
`3sqrt(2)x^2 - 5x - sqrt(2) = 0`
ज्ञात कीजिए कि क्या निम्नलिखित समीकरणों के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उन्हें ज्ञात कीजिए।
`x^2 + 5sqrt(5)x - 70 = 0`
एक रेलगाड़ी 360 km की दूरी एक-समान चाल के साथ तय करती है। यदि रेलगाड़ी यही दूरी 5 km/h अधिक चाल से तय करती तो यात्रा में 48 मिनट कम समय लगता। रेलगाड़ी की प्रारंभिक चाल ज्ञात कीजिए।