Advertisements
Advertisements
प्रश्न
Evaluate the
(viii) \[\left( 0 . 99 \right)^5 + \left( 1 . 01 \right)^5\]
उत्तर
\[(0 . 99 )^5 + (1 . 01 )^5 \]
\[ = (1 - 0 . 01 )^5 + (1 + 0 . 01 )^5 \]
\[ = 2[ ^{5}{}{C}_0 (0 . 01 )^0 + ^{5}{}{C}_2 (0 . 01 )^2 + ^{5}{}{C}_4 (0 . 01 )^4 ]\]
\[ = 2[1 + 10 \times 0 . 0001 + 5 \times 0 . 00000001]\]
\[ = 2 \times 1 . 00100005 = 2 . 0020001\]
APPEARS IN
संबंधित प्रश्न
Using binomial theorem, write down the expansions :
(iii) \[\left( x - \frac{1}{x} \right)^6\]
\[= ^{5}{}{C}_0 (2x )^5 (3y )^0 +^{5}{}{C}_1 (2x )^4 (3y )^1 + ^{5}{}{C}_2 (2x )^3 (3y )^2 + ^{5}{}{C}_3 (2x )^2 (3y )^3 + ^{5}{}{C}_4 (2x )^1 (3y )^4 +^{5}{}{C}_5 (2x )^0 (3y )^5\]
\[= 32 x^5 + 5 \times 16 x^4 \times 3y + 10 \times 8 x^3 \times 9 y^2 + 10 \times 4 x^2 \times 27 y^3 + 5 \times 2x \times 81 y^4 + 243 y^5 \]
\[ = 32 x^5 + 240 x^4 y + 720 x^3 y^2 + 1080 x^2 y^3 + 810x y^4 + 243 y^5 \]
Using binomial theorem, write down the expansions :
(ii) \[\left( 2x - 3y \right)^4\]
Using binomial theorem, write down the expansions .
(iii) \[\left( x - \frac{1}{x} \right)^6\]
Using binomial theorem, write down the expansions :
(iv) \[\left( 1 - 3x \right)^7\]
Using binomial theorem, write down the expansions :
(vi) \[\left( \frac{\sqrt{x}}{a} - \sqrt{\frac{a}{x}} \right)^6\]
Using binomial theorem, write down the expansions :
(viii) \[\left( 1 + 2x - 3 x^2 \right)^5\]
Using binomial theorem, write down the expansions :
(x) \[\left( 1 - 2x + 3 x^2 \right)^3\]
Evaluate the
(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]
Evaluate the
(iii)\[\left( 1 + 2 \sqrt{x} \right)^5 + \left( 1 - 2 \sqrt{x} \right)^5\]
Evaluate the
(vi) \[\left( 2 + \sqrt{3} \right)^7 + \left( 2 - \sqrt{3} \right)^7\]
Evaluate the
(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]
Evaluate the
(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]
Find \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .
Using binomial theorem evaluate :
(i) (96)3
Using binomial theorem evaluate .
(ii) (102)5
Using binomial theorem evaluate .
(iv) (98)5
Find the coefficient of:
(iii) \[x^{- 15}\] in the expansion of \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]
Find the coefficient of:
(iv) \[x^9\] in the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\]
Find the coefficient of:
(v) \[x^m\] in the expansion of \[\left( x + \frac{1}{x} \right)^n\]
Find the coefficient of:
(vii) \[a^5 b^7\] in the expansion of \[\left( a - 2b \right)^{12}\]
Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]
If a and b are coefficients of xn in the expansions of \[\left( 1 + x \right)^{2n} \text{ and } \left( 1 + x \right)^{2n - 1}\] respectively, then write the relation between a and b.
If a and b denote the sum of the coefficients in the expansions of \[\left( 1 - 3x + 10 x^2 \right)^n\] and \[\left( 1 + x^2 \right)^n\] respectively, then write the relation between a and b.
The term without x in the expansion of \[\left( 2x - \frac{1}{2 x^2} \right)^{12}\] is
If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\] is 270, then \[\lambda =\]
The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is
If \[T_2 / T_3\] in the expansion of \[\left( a + b \right)^n \text{ and } T_3 / T_4\] in the expansion of \[\left( a + b \right)^{n + 3}\] are equal, then n =
The coefficient of x8 y10 in the expansion of (x + y)18 is