Advertisements
Advertisements
प्रश्न
Using binomial theorem, write down the expansions .
(iii) \[\left( x - \frac{1}{x} \right)^6\]
उत्तर
(iii) \[\left( x - \frac{1}{x} \right)^6 \]
\[ = ^{6}{}{C}_0 x^6 \left( \frac{1}{x} \right)^0 - ^{6}{}{C}_1 x^5 \left( \frac{1}{x} \right)^1 +^{6}{}{C}_2 x^4 \left( \frac{1}{x} \right)^2 - ^{6}{}{C}_3 x^3 \left( \frac{1}{x} \right)^3 + ^{6}{}{C}_4 x^2 \left( \frac{1}{x} \right)^4 -^6 C_5 x^1 \left( \frac{1}{x} \right)^5 + ^{6}{}{C}_6 x^0 \left( \frac{1}{x} \right)^6 \]
\[ = x^6 - 6 x^5 \times \frac{1}{x} + 15 x^4 \times \frac{1}{x^2} - 20 x^3 \times \frac{1}{x^3} + 15 x^2 \times \frac{1}{x^4} - 6 x \times \frac{1}{x^5} + \frac{1}{x^6}\]
\[ = x^6 - 6 x^4 + 15 x^2 - 20 + \frac{15}{x^2} - \frac{6}{x^4} + \frac{1}{x^6}\]
APPEARS IN
संबंधित प्रश्न
Using binomial theorem, write down the expansions .
(i) \[\left( 2x + 3y \right)^5\]
Using binomial theorem, write down the expansions :
(iv) \[\left( 1 - 3x \right)^7\]
Evaluate the
(iii)\[\left( 1 + 2 \sqrt{x} \right)^5 + \left( 1 - 2 \sqrt{x} \right)^5\]
Evaluate the
(v) \[\left( 3 + \sqrt{2} \right)^5 - \left( 3 - \sqrt{2} \right)^5\]
Evaluate the
(vii) \[\left( \sqrt{3} + 1 \right)^5 - \left( \sqrt{3} - 1 \right)^5\]
Evaluate the
(viii) \[\left( 0 . 99 \right)^5 + \left( 1 . 01 \right)^5\]
Find \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .
Find \[\left( x + 1 \right)^6 + \left( x - 1 \right)^6\] . Hence, or otherwise evaluate \[\left( \sqrt{2} + 1 \right)^6 + \sqrt{2} - 1^6\] .
Using binomial theorem evaluate :
(i) (96)3
Using binomial theorem evaluate .
(ii) (102)5
Using binomial theorem evaluate .
(iv) (98)5
Using binomial theorem, prove that \[2^{3n} - 7n - 1\] is divisible by 49, where \[n \in N\] .
Using binomial theorem, prove that \[3^{2n + 2} - 8n - 9\] is divisible by 64, \[n \in N\] .
Find the coefficient of:
(ii) x7 in the expansion of \[\left( x - \frac{1}{x^2} \right)^{40}\]
Find the coefficient of:
(iii) \[x^{- 15}\] in the expansion of \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]
Find the coefficient of:
(v) \[x^m\] in the expansion of \[\left( x + \frac{1}{x} \right)^n\]
Find the coefficient of:
(vii) \[a^5 b^7\] in the expansion of \[\left( a - 2b \right)^{12}\]
Find the coefficient of:
(viii) x in the expansion of \[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16}\]
Does the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)\] contain any term involving x9?
If a and b denote respectively the coefficients of xm and xn in the expansion of \[\left( 1 + x \right)^{m + n}\], then write the relation between a and b.
If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\] is 270, then \[\lambda =\]
The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is
The coefficient of \[\frac{1}{x}\] in the expansion of \[\left( 1 + x \right)^n \left( 1 + \frac{1}{x} \right)^n\] is
The coefficient of x5 in the expansion of \[\left( 1 + x \right)^{21} + \left( 1 + x \right)^{22} + . . . + \left( 1 + x \right)^{30}\]
The coefficient of x8 y10 in the expansion of (x + y)18 is
If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is