हिंदी

Using Binomial Theorem, Write Down the Expansions : (Ii) ( 2 X − 3 Y ) 4 - Mathematics

Advertisements
Advertisements

प्रश्न

Using binomial theorem, write down the expansions  :

(ii)  (2x3y)4

 

उत्तर

(ii) (2x − 3y)4

=4C0(2x)4(3y)04C1(2x)3(3y)1+4C2(2x)2(3y)24C3(2x)1(3y)3+4C4(2x)0(3y)4

=16x44×8x3×3y+6×4x2×9y24×2x×27y3+81y4

=16x496x3y+216x2y2216xy3+81y4

 

shaalaa.com
Introduction of Binomial Theorem
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.1 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.1 | Q 1.02 | पृष्ठ ११

संबंधित प्रश्न

Using binomial theorem, write down the expansions  . 

(i)  (2x+3y)5

 


Using binomial theorem, write down the expansions  .

(iii)  (x1x)6


Using binomial theorem, write down the expansions  :

(iv)  (13x)7

 


Using binomial theorem, write down the expansions  :

(vii)  (x3a3)6

 


Using binomial theorem, write down the expansions  :

(ix) (x+11x)

 


Evaluate the 

(i)(x+1+x1)6+(x+1x1)6

 


Evaluate the 

(iii)(1+2x)5+(12x)5

 


Evaluate the

(iv)  (2+1)6+(21)6

 


Evaluate the

(v)  (3+2)5(32)5

 


Evaluate the

(vi)  (2+3)7+(23)7


Evaluate the

(viii)  (0.99)5+(1.01)5

 

Evaluate the

(x) {a2+a21}4+{a2a21}4

 

Find  (a+b)4(ab)4 . Hence, evaluate (3+2)4(32)4 .

 

Find (x+1)6+(x1)6 . Hence, or otherwise evaluate (2+1)6+216 .

 

 


Using binomial theorem evaluate :

(i) (96)3


Using binomial theorem evaluate .

(iii) (101)4

 


Using binomial theorem, prove that  32n+28n9  is divisible by 64, nN .

 

Find the coefficient of: 

(i) x10 in the expansion of  (2x21x)20

 

Find the coefficient of: 

(ii) x7 in the expansion of  (x1x2)40

 
 

Find the coefficient of: 

(iii)  x15  in the expansion of  (3x2a3x3)10

 

 


Find the coefficient of: 

(vi) x in the expansion of  (12x3+3x5)(1+1x)8

 

Find the coefficient of: 

(vii) a5b7  in the expansion of  (a2b)12

 
 

Find the coefficient of: 

(viii) x in the expansion of (13x+7x2)(1x)16

 

Write the sum of the coefficients in the expansion of (13x+x2)111

 

If a and b are coefficients of xn in the expansions of (1+x)2n and (1+x)2n1 respectively, then write the relation between a and b.

 
 

If a and b denote the sum of the coefficients in the expansions of (13x+10x2)n  and (1+x2)n  respectively, then write the relation between a and b.

 
 
 

The coefficient of x4 in (x23x2)10 is

 

If  T2/T3  in the expansion of (a+b)n and T3/T4  in the expansion of (a+b)n+3  are equal, then n =

 
 

The coefficient of  1x  in the expansion of (1+x)n(1+1x)n is 

 
 

The coefficient of x8 y10 in the expansion of (x + y)18 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.