हिंदी

Find the Coefficient Of: (Viii) X in the Expansion of ( 1 − 3 X + 7 X 2 ) ( 1 − X ) 16 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coefficient of: 

(viii) x in the expansion of \[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16}\]

 

उत्तर

(viii) Suppose x occurs at the (+ 1)th term in the given expression.
Then, we have: 

\[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16} \]

\[ = \left( 1 - 3x + 7 x^2 \right)\left( ^{16}{}{C}_0 + ^{16}{}{C}_1 \left( - x \right) + ^{16}{}{C}_2 \left( - x \right)^2 + ^{16}{}{C}_3 \left( - x \right)^3 + ^{16}{}{C}_4 \left( - x \right)^4 +^{16} C_5 \left( - x \right)^5 + ^{16}{}{C}_6 \left( - x \right)^6 + ^{16}{}{C}_7 \left( - x \right)^7 +^{16}{}{C}_8 \left( - x \right)^8 +^{16}{}{C}_9 \left( - x \right)^9 + ^{16}{}{C}_{10} \left( - x \right)^{10} +^{16}{}{C}_{11} \left( - x \right)^{11} + ^{16}{}{C}_{12} \left( - x \right)^{12} + ^{16}{}{C}_{13} \left( - x \right)^{13} + ^{16}{}{C}_{14} \left( - x \right)^{14} + ^{16}{}{C}_{15} \left( - x \right)^{15} + ^{16}{}{C}_{16} \left( - x \right)^{16} \right)\]

\[ \text{ x occurs in the above expresssion at}  {}^{16} C_1 \left( - x \right) - 3x ^{16}{}{C}_0 . \]

\[ \therefore \text{ Coefficient of }  x = - \left( \frac{16!}{1! 15!} \right) - 3\left( \frac{16!}{0! 16!} \right) = - 16 - 3 = - 19\]

shaalaa.com
Introduction of Binomial Theorem
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.2 | Q 9.8 | पृष्ठ ३७

संबंधित प्रश्न

Using binomial theorem, write down the expansions  :

(iii)  \[\left( x - \frac{1}{x} \right)^6\]

\[= ^{5}{}{C}_0 (2x )^5 (3y )^0 +^{5}{}{C}_1 (2x )^4 (3y )^1 + ^{5}{}{C}_2 (2x )^3 (3y )^2 + ^{5}{}{C}_3 (2x )^2 (3y )^3 + ^{5}{}{C}_4 (2x )^1 (3y )^4 +^{5}{}{C}_5 (2x )^0 (3y )^5\]

\[= 32 x^5 + 5 \times 16 x^4 \times 3y + 10 \times 8 x^3 \times 9 y^2 + 10 \times 4 x^2 \times 27 y^3 + 5 \times 2x \times 81 y^4 + 243 y^5 \]
\[ = 32 x^5 + 240 x^4 y + 720 x^3 y^2 + 1080 x^2 y^3 + 810x y^4 + 243 y^5 \]

 

 


Using binomial theorem, write down the expansions  :

(iv)  \[\left( 1 - 3x \right)^7\]

 


Using binomial theorem, write down the expansions  :

(vi) \[\left( \frac{\sqrt{x}}{a} - \sqrt{\frac{a}{x}} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(vii)  \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]

 


Evaluate the 

(i)\[\left( \sqrt{x + 1} + \sqrt{x - 1} \right)^6 + \left( \sqrt{x + 1} - \sqrt{x - 1} \right)^6\]

 


Evaluate the 

(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]

 


Evaluate the

(iv)  \[\left( \sqrt{2} + 1 \right)^6 + \left( \sqrt{2} - 1 \right)^6\]

 


Evaluate the

(v)  \[\left( 3 + \sqrt{2} \right)^5 - \left( 3 - \sqrt{2} \right)^5\]

 


Evaluate the

(vi)  \[\left( 2 + \sqrt{3} \right)^7 + \left( 2 - \sqrt{3} \right)^7\]


Evaluate the

(viii)  \[\left( 0 . 99 \right)^5 + \left( 1 . 01 \right)^5\]

 

Evaluate the

(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]

 


Evaluate the

(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]

 

Using binomial theorem evaluate :

(i) (96)3


Using binomial theorem evaluate  .

(ii) (102)5

 


Using binomial theorem evaluate .

(iv) (98)5

 

Find the coefficient of: 

(iii)  \[x^{- 15}\]  in the expansion of  \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]

 

 


Find the coefficient of: 

(iv)  \[x^9\]  in the expansion of  \[\left( x^2 - \frac{1}{3x} \right)^9\]

 

 


Find the coefficient of: 

(v)  \[x^m\]  in the expansion of  \[\left( x + \frac{1}{x} \right)^n\]

 

 


Find the coefficient of: 

(vi) x in the expansion of  \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]

 

Find the coefficient of: 

(vii) \[a^5 b^7\]  in the expansion of  \[\left( a - 2b \right)^{12}\]

 
 

Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]

 

If a and b denote respectively the coefficients of xm and xn in the expansion of \[\left( 1 + x \right)^{m + n}\], then write the relation between a and b.

 
 

If a and b denote the sum of the coefficients in the expansions of \[\left( 1 - 3x + 10 x^2 \right)^n\]  and \[\left( 1 + x^2 \right)^n\]  respectively, then write the relation between a and b.

 
 
 

The term without x in the expansion of \[\left( 2x - \frac{1}{2 x^2} \right)^{12}\] is 

 

If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\]  is 270, then \[\lambda =\]

 
 

The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is

 

If  \[T_2 / T_3\]  in the expansion of \[\left( a + b \right)^n \text{ and } T_3 / T_4\]  in the expansion of \[\left( a + b \right)^{n + 3}\]  are equal, then n =

 
 

If the sum of the binomial coefficients of the expansion \[\left( 2x + \frac{1}{x} \right)^n\]  is equal to 256, then the term independent of x is

  

The coefficient of x5 in the expansion of \[\left( 1 + x \right)^{21} + \left( 1 + x \right)^{22} + . . . + \left( 1 + x \right)^{30}\]

 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×