Advertisements
Advertisements
प्रश्न
Which term in the expansion of \[\left\{ \left( \frac{x}{\sqrt{y}} \right)^{1/3} + \left( \frac{y}{x^{1/3}} \right)^{1/2} \right\}^{21}\] contains x and y to one and the same power?
उत्तर
Suppose Tr+1th term in the given expression contains x and y to one and the same power.
Then, \[T_{r + 1} \text{ th term is} \]
\[ ^{21}{}{C}_r \left[ \left( \frac{x}{\sqrt{y}} \right)^{1/3} \right]^{21 - r} \left[ \left( \frac{y}{x^{1/3}} \right)^{{}^{1/2}} \right]^r \]
\[ =^{21}{}{C}_r \left( \frac{x^{(21 - r)/3}}{x^{r/6}} \right)\left( \frac{y^{r/2}}{y^{(21 - r)/6}} \right)\]
\[ = ^{21}{}{C}_r \left( x \right)^{7 - r/2} \left( y \right)^{2r/3 - 7/2} \]
\[\text{ Now, if x and y have the same power, then } \]
\[7 - \frac{r}{2} = \frac{2r}{3} - \frac{7}{2}\]
\[ \Rightarrow \frac{2r}{3} + \frac{r}{2} = 7 + \frac{7}{2}\]
\[ \Rightarrow \frac{7r}{6} = \frac{21}{2}\]
\[ \Rightarrow r = 9\]
\[\text{ Hence, the required term is the 10th term } \]
APPEARS IN
संबंधित प्रश्न
Using binomial theorem, write down the expansions .
(i) \[\left( 2x + 3y \right)^5\]
Using binomial theorem, write down the expansions :
(ii) \[\left( 2x - 3y \right)^4\]
Using binomial theorem, write down the expansions .
(iii) \[\left( x - \frac{1}{x} \right)^6\]
Using binomial theorem, write down the expansions :
(iv) \[\left( 1 - 3x \right)^7\]
Using binomial theorem, write down the expansions :
(v) \[\left( ax - \frac{b}{x} \right)^6\]
Using binomial theorem, write down the expansions :
(viii) \[\left( 1 + 2x - 3 x^2 \right)^5\]
Using binomial theorem, write down the expansions :
(ix) \[\left( x + 1 - \frac{1}{x} \right)\]
Using binomial theorem, write down the expansions :
(x) \[\left( 1 - 2x + 3 x^2 \right)^3\]
Evaluate the
(i)\[\left( \sqrt{x + 1} + \sqrt{x - 1} \right)^6 + \left( \sqrt{x + 1} - \sqrt{x - 1} \right)^6\]
Evaluate the
(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]
Evaluate the
(iii)\[\left( 1 + 2 \sqrt{x} \right)^5 + \left( 1 - 2 \sqrt{x} \right)^5\]
Evaluate the
(iv) \[\left( \sqrt{2} + 1 \right)^6 + \left( \sqrt{2} - 1 \right)^6\]
Evaluate the
(vii) \[\left( \sqrt{3} + 1 \right)^5 - \left( \sqrt{3} - 1 \right)^5\]
Find \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .
Using binomial theorem evaluate :
(i) (96)3
Using binomial theorem evaluate .
(iii) (101)4
Using binomial theorem evaluate .
(iv) (98)5
Using binomial theorem, prove that \[2^{3n} - 7n - 1\] is divisible by 49, where \[n \in N\] .
Find the coefficient of:
(i) x10 in the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)^{20}\]
Find the coefficient of:
(ii) x7 in the expansion of \[\left( x - \frac{1}{x^2} \right)^{40}\]
Find the coefficient of:
(iv) \[x^9\] in the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\]
Find the coefficient of:
(v) \[x^m\] in the expansion of \[\left( x + \frac{1}{x} \right)^n\]
Find the coefficient of:
(vii) \[a^5 b^7\] in the expansion of \[\left( a - 2b \right)^{12}\]
Does the expansion of \[\left( 2 x^2 - \frac{1}{x} \right)\] contain any term involving x9?
Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]
If a and b denote respectively the coefficients of xm and xn in the expansion of \[\left( 1 + x \right)^{m + n}\], then write the relation between a and b.
If a and b denote the sum of the coefficients in the expansions of \[\left( 1 - 3x + 10 x^2 \right)^n\] and \[\left( 1 + x^2 \right)^n\] respectively, then write the relation between a and b.
If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\] is 270, then \[\lambda =\]
If \[T_2 / T_3\] in the expansion of \[\left( a + b \right)^n \text{ and } T_3 / T_4\] in the expansion of \[\left( a + b \right)^{n + 3}\] are equal, then n =
The coefficient of x5 in the expansion of \[\left( 1 + x \right)^{21} + \left( 1 + x \right)^{22} + . . . + \left( 1 + x \right)^{30}\]
The coefficient of x8 y10 in the expansion of (x + y)18 is
If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is