Advertisements
Advertisements
प्रश्न
The coefficient of x8 y10 in the expansion of (x + y)18 is
विकल्प
18C8
18p10
218
none of these
उत्तर
18C8
\[\text{ Suppose the (r + 1)th term in the given expansion contains } x^8 y^{10} . \]
\[\text{ Then, we have } \]
\[ T_{r + 1} =^{18}{}{C}_r x^{18 - r} y^r \]
\[\text{ For the coefficient of } x^8 y^{10} \text{ We have} \]
\[r = 10\]
\[\text{ Hence, the required coefficient is }^{18}{}{C}_{10} \text{ or } ^{18}{}{C}_8\]
APPEARS IN
संबंधित प्रश्न
Using binomial theorem, write down the expansions .
(i) \[\left( 2x + 3y \right)^5\]
Using binomial theorem, write down the expansions .
(iii) \[\left( x - \frac{1}{x} \right)^6\]
Using binomial theorem, write down the expansions :
(vi) \[\left( \frac{\sqrt{x}}{a} - \sqrt{\frac{a}{x}} \right)^6\]
Using binomial theorem, write down the expansions :
(vii) \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]
Using binomial theorem, write down the expansions :
(viii) \[\left( 1 + 2x - 3 x^2 \right)^5\]
Evaluate the
(i)\[\left( \sqrt{x + 1} + \sqrt{x - 1} \right)^6 + \left( \sqrt{x + 1} - \sqrt{x - 1} \right)^6\]
Evaluate the
(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]
Evaluate the
(iv) \[\left( \sqrt{2} + 1 \right)^6 + \left( \sqrt{2} - 1 \right)^6\]
Evaluate the
(ix) \[\left( \sqrt{3} + \sqrt{2} \right)^6 - \left( \sqrt{3} - \sqrt{2} \right)^6\]
Evaluate the
(x) \[\left\{ a^2 + \sqrt{a^2 - 1} \right\}^4 + \left\{ a^2 - \sqrt{a^2 - 1} \right\}^4\]
Find \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .
Using binomial theorem evaluate :
(i) (96)3
Using binomial theorem evaluate .
(ii) (102)5
Using binomial theorem evaluate .
(iii) (101)4
Using binomial theorem, prove that \[2^{3n} - 7n - 1\] is divisible by 49, where \[n \in N\] .
Using binomial theorem, prove that \[3^{2n + 2} - 8n - 9\] is divisible by 64, \[n \in N\] .
Find the coefficient of:
(ii) x7 in the expansion of \[\left( x - \frac{1}{x^2} \right)^{40}\]
Find the coefficient of:
(iv) \[x^9\] in the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\]
Which term in the expansion of \[\left\{ \left( \frac{x}{\sqrt{y}} \right)^{1/3} + \left( \frac{y}{x^{1/3}} \right)^{1/2} \right\}^{21}\] contains x and y to one and the same power?
Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]
If a and b denote respectively the coefficients of xm and xn in the expansion of \[\left( 1 + x \right)^{m + n}\], then write the relation between a and b.
If a and b are coefficients of xn in the expansions of \[\left( 1 + x \right)^{2n} \text{ and } \left( 1 + x \right)^{2n - 1}\] respectively, then write the relation between a and b.
If a and b denote the sum of the coefficients in the expansions of \[\left( 1 - 3x + 10 x^2 \right)^n\] and \[\left( 1 + x^2 \right)^n\] respectively, then write the relation between a and b.
The term without x in the expansion of \[\left( 2x - \frac{1}{2 x^2} \right)^{12}\] is
If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\] is 270, then \[\lambda =\]
The coefficient of x4 in \[\left( \frac{x}{2} - \frac{3}{x^2} \right)^{10}\] is
The coefficient of \[\frac{1}{x}\] in the expansion of \[\left( 1 + x \right)^n \left( 1 + \frac{1}{x} \right)^n\] is
If the sum of the binomial coefficients of the expansion \[\left( 2x + \frac{1}{x} \right)^n\] is equal to 256, then the term independent of x is
If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is