हिंदी

If the Sum of the Binomial Coefficients of the Expansion ( 2 X + 1 X ) N is Equal to 256, Then the Term Independent of X is (A) 1120 (B) 1020 (C) 512 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If the sum of the binomial coefficients of the expansion \[\left( 2x + \frac{1}{x} \right)^n\]  is equal to 256, then the term independent of x is

  

विकल्प

  •  1120

  •  1020

  • 512

  •  none of these

     
MCQ

उत्तर

1120

\[\text{ Suppose (r + 1)th tem in the given expansion is independent of x . }  \]

\[\text{ Then, we have } \]

\[ T_{r + 1} = ^{n}{}{C}_r (2x )^{n - r} \left( \frac{1}{x} \right)^r \]

\[ = ^{n}{}{C}_r 2^{n - r} x^{n - 2r} \]

\[\text{ For this term to be independent of x, we must have } \]

\[n - 2r = 0\]

\[ \Rightarrow r = n/2\]

\[ \therefore \text{ Required term } = ^{n}{}{C}_{n/2} 2^{n - n/2} = \frac{n!}{\left[ \left( n/2 \right)! \right]^2} 2^{n/2} \]

\[\text{ We know } : \]

\[\text{ Sum of the given expansion } = 256\]

\[\text{ Thus, we have } \]

\[ 2^n . 1^n = 256\]

\[ \Rightarrow n = 8\]

\[ \therefore \text{ Required term }  = \frac{8!}{\left( 4 \right)! \left( 4 \right)!} 2^4 = 1120\]

 

shaalaa.com
Introduction of Binomial Theorem
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.4 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.4 | Q 21 | पृष्ठ ४७

संबंधित प्रश्न

Using binomial theorem, write down the expansions  . 

(i)  \[\left( 2x + 3y \right)^5\]

 


Using binomial theorem, write down the expansions  :

(ii)  \[\left( 2x - 3y \right)^4\]

 


Using binomial theorem, write down the expansions  .

(iii)  \[\left( x - \frac{1}{x} \right)^6\]


Using binomial theorem, write down the expansions  :

(iv)  \[\left( 1 - 3x \right)^7\]

 


Using binomial theorem, write down the expansions  :

(v) \[\left( ax - \frac{b}{x} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(vi) \[\left( \frac{\sqrt{x}}{a} - \sqrt{\frac{a}{x}} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(vii)  \[\left( \sqrt[3]{x} - \sqrt[3]{a} \right)^6\]

 


Using binomial theorem, write down the expansions  :

(viii)  \[\left( 1 + 2x - 3 x^2 \right)^5\]

 


Using binomial theorem, write down the expansions  :

(ix) \[\left( x + 1 - \frac{1}{x} \right)\]

 


Evaluate the 

(i)\[\left( \sqrt{x + 1} + \sqrt{x - 1} \right)^6 + \left( \sqrt{x + 1} - \sqrt{x - 1} \right)^6\]

 


Evaluate the 

(ii) \[\left( x + \sqrt{x^2 - 1} \right)^6 + \left( x - \sqrt{x^2 - 1} \right)^6\]

 


Evaluate the 

(iii)\[\left( 1 + 2 \sqrt{x} \right)^5 + \left( 1 - 2 \sqrt{x} \right)^5\]

 


Evaluate the

(iv)  \[\left( \sqrt{2} + 1 \right)^6 + \left( \sqrt{2} - 1 \right)^6\]

 


Evaluate the

(vi)  \[\left( 2 + \sqrt{3} \right)^7 + \left( 2 - \sqrt{3} \right)^7\]


Evaluate the

(vii) \[\left( \sqrt{3} + 1 \right)^5 - \left( \sqrt{3} - 1 \right)^5\]

 


Evaluate the

(viii)  \[\left( 0 . 99 \right)^5 + \left( 1 . 01 \right)^5\]

 

Find  \[\left( a + b \right)^4 - \left( a - b \right)^4\] . Hence, evaluate \[\left( \sqrt{3} + \sqrt{2} \right)^4 - \left( \sqrt{3} - \sqrt{2} \right)^4\] .

 

Using binomial theorem evaluate :

(i) (96)3


Using binomial theorem, prove that  \[3^{2n + 2} - 8n - 9\]  is divisible by 64, \[n \in N\] .

 

Find the coefficient of: 

(iii)  \[x^{- 15}\]  in the expansion of  \[\left( 3 x^2 - \frac{a}{3 x^3} \right)^{10}\]

 

 


Find the coefficient of: 

(iv)  \[x^9\]  in the expansion of  \[\left( x^2 - \frac{1}{3x} \right)^9\]

 

 


Find the coefficient of: 

(vi) x in the expansion of  \[\left( 1 - 2 x^3 + 3 x^5 \right) \left( 1 + \frac{1}{x} \right)^8\]

 

Find the coefficient of: 

(viii) x in the expansion of \[\left( 1 - 3x + 7 x^2 \right) \left( 1 - x \right)^{16}\]

 

Which term in the expansion of \[\left\{ \left( \frac{x}{\sqrt{y}} \right)^{1/3} + \left( \frac{y}{x^{1/3}} \right)^{1/2} \right\}^{21}\]  contains x and y to one and the same power?

 

 


Write the sum of the coefficients in the expansion of \[\left( 1 - 3x + x^2 \right)^{111}\]

 

If a and b are coefficients of xn in the expansions of \[\left( 1 + x \right)^{2n} \text{ and } \left( 1 + x \right)^{2n - 1}\] respectively, then write the relation between a and b.

 
 

If the coefficient of x in \[\left( x^2 + \frac{\lambda}{x} \right)^5\]  is 270, then \[\lambda =\]

 
 

If  \[T_2 / T_3\]  in the expansion of \[\left( a + b \right)^n \text{ and } T_3 / T_4\]  in the expansion of \[\left( a + b \right)^{n + 3}\]  are equal, then n =

 
 

If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×