Advertisements
Advertisements
प्रश्न
Factorise : (x2 + 4y2 - 9z2)2 - 16x2y2
उत्तर
(x2 + 4y2 - 9z2)2 - 16x2y2
= (x2 + 4y2 - 9z2)2 - ( 4xy )2
= ( x2 + 4y2 - 9z2 - 4xy )( x2 + 4y2 - 9z2 + 4xy ) [ ∵ a2 - b2 = ( a + b )( a - b )]
= ( x2 + 4y2 - 4xy - 9z2 )( x2 + 4y2 + 4xy - 9z2 )
= [( x - 2y )2 - (3z)2 ][ ( x + 2y )2 - (3z)2 ]
= [( x - 2y ) - 3z ][( x - 2y ) + 3z ][( x + 2y ) - 3z ][( x + 2y ) + 3z ]
= [ x - 2y - 3z ][ x - 2y + 3z ][ x + 2y - 3z ][ x + 2y + 3z ]
APPEARS IN
संबंधित प्रश्न
Factorise : 25a2 - 9b2
Factorise : a2 - (2a + 3b)2
Factorise : a2 - 81 (b-c)2
Factorise : 25(2a - b)2 - 81b2
Factorise : (a + b)3 - a - b
Factorise : a2 + b2 - c2 - d2 + 2ab - 2cd
Factorise : 4x4 - x2 - 12x - 36
Factorise the following by the difference of two squares:
441 - 81y2
Factorise the following by the difference of two squares:
x6 - 196
Factorise the following by the difference of two squares:
(x - 2y)2 -z2