हिंदी

Find a point which is equidistant from the points A(–5, 4) and B(–1, 6)? How many such points are there? - Mathematics

Advertisements
Advertisements

प्रश्न

Find a point which is equidistant from the points A(–5, 4) and B(–1, 6)? How many such points are there?

योग

उत्तर

Let P(h, k) be the point which is equidistant from the points A(–5, 4) and B(–1, 6).

∴ PA = PB   ...`[∵ "By distance formula, distance" = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)]`

⇒ (PA)2 = (PB)2

⇒ (– 5 – h)2 + (4 – k)2 = (– 1 – h)2 + (6 – k)2

⇒ 25 + h2 + 10h + 16 + k2 – 8k = 1 + h2 + 2h + 36 + k2 – 12k

⇒ 25 + 10h + 16 – 8k = 1 + 2h + 36 – 12k

⇒ 8h + 4k + 41 – 37 = 0

⇒ 8h + 4k + 4 = 0

⇒ 2h + k + 1 = 0   ...(i)

Mid-point of AB = `((-5 - 1)/2, (4 + 6)/2)` = (– 3, 5)   ...`[∵ "Mid-point" = ((x_1 + x_2)/2, (y_1 + y_2)/2)]`

At point (– 3, 5), from equation (i),

2h + k = 2(– 3) + 5

= – 6 + 5

= – 1

⇒ 2h + k + 1 = 0

So, the mid-point of AB satisfy the equation (i).

Hence, infinite number of points, in fact all points which are solution of the equation 2h + k + 1 = 0, are equidistant from the points A and B.

Replacing h, k by x, y in above equation, we have 2x + y + 1 = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Coordinate Geometry - Exercise 7.3 [पृष्ठ ८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 7 Coordinate Geometry
Exercise 7.3 | Q 5 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×