Advertisements
Advertisements
Question
Find a point which is equidistant from the points A(–5, 4) and B(–1, 6)? How many such points are there?
Solution
Let P(h, k) be the point which is equidistant from the points A(–5, 4) and B(–1, 6).
∴ PA = PB ...`[∵ "By distance formula, distance" = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)]`
⇒ (PA)2 = (PB)2
⇒ (– 5 – h)2 + (4 – k)2 = (– 1 – h)2 + (6 – k)2
⇒ 25 + h2 + 10h + 16 + k2 – 8k = 1 + h2 + 2h + 36 + k2 – 12k
⇒ 25 + 10h + 16 – 8k = 1 + 2h + 36 – 12k
⇒ 8h + 4k + 41 – 37 = 0
⇒ 8h + 4k + 4 = 0
⇒ 2h + k + 1 = 0 ...(i)
Mid-point of AB = `((-5 - 1)/2, (4 + 6)/2)` = (– 3, 5) ...`[∵ "Mid-point" = ((x_1 + x_2)/2, (y_1 + y_2)/2)]`
At point (– 3, 5), from equation (i),
2h + k = 2(– 3) + 5
= – 6 + 5
= – 1
⇒ 2h + k + 1 = 0
So, the mid-point of AB satisfy the equation (i).
Hence, infinite number of points, in fact all points which are solution of the equation 2h + k + 1 = 0, are equidistant from the points A and B.
Replacing h, k by x, y in above equation, we have 2x + y + 1 = 0
APPEARS IN
RELATED QUESTIONS
If A(5, 2), B(2, −2) and C(−2, t) are the vertices of a right angled triangle with ∠B = 90°, then find the value of t.
Show that the points (1, – 1), (5, 2) and (9, 5) are collinear.
In a classroom, 4 friends are seated at the points A, B, C and D as shown in the following figure. Champa and Chameli walk into the class and after observing for a few minutes, Champa asks Chameli, “Don’t you think ABCD is a square?” Chameli disagrees.
Using distance formula, find which of them is correct.
Find the distance between the points
(i) A(9,3) and B(15,11)
Find the distance between the following pair of point.
P(–5, 7), Q(–1, 3)
Find the coordinate of O , the centre of a circle passing through A (8 , 12) , B (11 , 3), and C (0 , 14). Also , find its radius.
A point P lies on the x-axis and another point Q lies on the y-axis.
If the abscissa of point P is -12 and the ordinate of point Q is -16; calculate the length of line segment PQ.
Points A (-3, -2), B (-6, a), C (-3, -4) and D (0, -1) are the vertices of quadrilateral ABCD; find a if 'a' is negative and AB = CD.
Find distance between point Q(3, – 7) and point R(3, 3)
Solution: Suppose Q(x1, y1) and point R(x2, y2)
x1 = 3, y1 = – 7 and x2 = 3, y2 = 3
Using distance formula,
d(Q, R) = `sqrt(square)`
∴ d(Q, R) = `sqrt(square - 100)`
∴ d(Q, R) = `sqrt(square)`
∴ d(Q, R) = `square`
The equation of the perpendicular bisector of line segment joining points A(4,5) and B(-2,3) is ______.