हिंदी

Find the Area Of δAbc with A(1, -4) and Midpoints of Sides Through a Being (2, -1) and (0, -1). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of  ΔABC with A(1, -4) and midpoints of sides through A being (2, -1) and (0, -1).

उत्तर

Let ( x2, y2) and (x3, y3) be the coordinates of B and C respectively. Since, the coordinates of A are (1,-4) , therefore

`(1+x_2)/2= 2⇒x_2 = 3`

`(-4+y_2)/2=-1⇒y_2 = 2`

`(1+x_2)/2 =0⇒x_3=-1`

`(-4+y_3)/2 = -1 ⇒ y_3 = 2`

` " let " A (x_1,y_1) = A (1,-4) , B (x_2,y_2) = B(3,2) and C(x_3,y_3) = C (-1,2) Now`

`"Area " (Δ ABC) = 1/2 [x_1(y_2-y_3) +x_2 (y_3-y_1)+x_3(y_1-y
_2)]`

`=1/2 [1(2-2)+(2+4)-1(-4-2)]`

`=1/2[0+18+6]`

=12 sq. units 

Hence, the area of the triangle  ΔABCis 12 sq. units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Coordinate Geomentry - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 16 Coordinate Geomentry
Exercises 3 | Q 8
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×