हिंदी

Find the Area of the Quadrilateral Whose Vertices, Taken in Order, Are (-4, -2), (-3, -5), (3, -2) and (2, 3). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the quadrilateral whose vertices, taken in order, are (-4, -2), (-3, -5), (3, -2) and (2, 3).

उत्तर

Let the vertices of the quadrilateral be A ( - 4, - 2), B ( - 3, - 5), C (3, - 2), and D (2, 3). Join AC to form two triangles ΔABC and ΔACD.

Area of a triangle =`1/2 {x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)}`

Area of ΔABC = `1/2 [(-4) {(-5) - (-2)} + (-3) {(-2) - (-2)} + 3 {(-2) - (-5)}]`

= `1/2 (12+0+9)`

= 21/2 square units

Area of ΔACD = `1/2 [(-4) {(-2) - (3)} + 3{(3) - (-2)} + 2 {(-2) - (-2)}]`

= `1/2 (20+15+0)`

= 35/2 square units

Area of ☐ABCD = Area of ΔABC + Area of ΔACD

=`(21/2 + 35/2)` square units = 28 square units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Coordinate Geometry - Exercise 7.3 [पृष्ठ १७०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 7 Coordinate Geometry
Exercise 7.3 | Q 4 | पृष्ठ १७०
आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.5 | Q 2.3 | पृष्ठ ५३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×