हिंदी

Find the Distance of the Point (1, -2, 4) from Plane Passing Throuhg the Point (1, 2, 2) and Perpendicular of the Planes X − Y + 2 Z = 3 and 2 X - 2 Y +Z + 12 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the distance of the point (1, -2, 4) from plane passing throuhg the point (1, 2, 2) and perpendicular of the planes x - y + 2z = 3 and 2x - 2y + z + 12 = 0 

योग

उत्तर

Let the equation of plane passing through the point (1, 2, 2) be

\[a\left( x - 1 \right) + b\left( y - 2 \right) + c\left( z - 2 \right) = 0\]    ...(1)

Here, a, b, c are the direction ratios of the normal to the plane.

The equations of the given planes are x − y + 2z = 3 and 2x − 2y + z + 12 = 0.

Plane (1) is perpendicular to the given planes.
a − b + 2c = 0           .....(2)
2a − 2b + c = 0         .....(3)

Eliminating a, b and c from (1), (2) and (3), we get

\[\begin{vmatrix}x - 1 & y - 2 & z - 2 \\ 1 & - 1 & 2 \\ 2 & - 2 & 1\end{vmatrix} = 0\]
\[ \Rightarrow \left( x - 1 \right)\left( - 1 + 4 \right) - \left( y - 2 \right)\left( 1 - 4 \right) + \left( z - 2 \right)\left( - 2 + 2 \right) = 0\]
\[ \Rightarrow 3x + 3y - 9 = 0\]
\[ \Rightarrow x + y - 3 = 0\]

∴ Distance of the point (1, −2, 4) from the plane x + y − 3 = 0

\[= \left| \frac{1 - 2 - 3}{\sqrt{1^2 + 1^2 + 0^2}} \right|\]
\[ = \left| \frac{- 4}{\sqrt{2}} \right|\]
\[ = 2\sqrt{2} \text{ units } \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.09 [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.09 | Q 13 | पृष्ठ ४९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that the points (1, 1, 1) and (-3, 0, 1) are equidistant from the plane `bar r (3bari+4barj-12bark)+13=0`


Find the distance between the point (7, 2, 4) and the plane determined by the points A(2, 5, −3), B(−2, −3, 5) and C(5, 3, −3).


Find the equation of the planes parallel to the plane x + 2y+ 2z + 8 =0 which are at the distance of 2  units from the point (1,1, 2)


Find the distance of a point (2, 5, −3) from the plane `vec r.(6hati-3hatj+2 hatk)=4`


Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0. Also find the distance of the plane, obtained above, from the origin.


In the given cases, find the distance of each of the given points from the corresponding given plane.

Point                    Plane
(0, 0, 0)           3x – 4y + 12 z = 3


In the given cases, find the distance of each of the given points from the corresponding given plane

Point                   Plane

(3, – 2, 1)             2x – y + 2z + 3 = 0


In the given cases, find the distance of each of the given points from the corresponding given plane.

Point              Plane

(– 6, 0, 0)        2x – 3y + 6z – 2 = 0


Find the distance of the point (−1, −5, −­10) from the point of intersection of the line `vecr = 2hati -hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr.(hati -hatj + hatk) = 5`.


Distance between the two planes: 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is

(A) 2 units

(B) 4 units

(C) 8 units

(D)`2/sqrt29 "units"`


Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.


Find the distance of the point  \[2 \hat{i} - \hat{j} - 4 \hat{k}\]  from the plane  \[\vec{r} \cdot \left( 3 \hat{i}  - 4 \hat{j}  + 12 \hat{k}  \right) - 9 = 0 .\]


Show that the points \[\hat{i}  - \hat{j}  + 3 \hat{k}  \text{ and }  3 \hat{i}  + 3 \hat{j}  + 3 \hat{k} \] are equidistant from the plane \[\vec{r} \cdot \left( 5 \hat{i}  + 2 \hat{j}  - 7 \hat{k}  \right) + 9 = 0 .\]

  

Find the distance of the point (2, 3, −5) from the plane x + 2y − 2z − 9 = 0.

 

Find the equations of the planes parallel to the plane x + 2y − 2z + 8 = 0 that are at a distance of 2 units from the point (2, 1, 1).

 

Show that the points (1, 1, 1) and (−3, 0, 1) are equidistant from the plane 3x + 4y − 12z + 13 = 0.

 

Find the equations of the planes parallel to the plane x − 2y + 2z − 3 = 0 and which are at a unit distance from the point (1, 1, 1).

 

Find the distance of the point (3, 3, 3) from the plane \[\vec{r} \cdot \left( 5 \hat{i}  + 2 \hat{j}  - 7k \right) + 9 = 0\]

 

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured parallel to the line whose direction cosines are proportional to 2, 3, −6.


If the product of the distances of the point (1, 1, 1) from the origin and the plane x − y + z+ λ = 0 be 5, find the value of λ.


Find an equation for the set of all points that are equidistant from the planes 3x − 4y + 12z = 6 and 4x + 3z = 7.

 

Find the distance between the point (7, 2, 4) and the plane determined by the points A(2, 5, −3), B(−2, −3, 5) and C (5, 3, −3). 


Find the equation of the plane mid-parallel to the planes 2x − 2y + z + 3 = 0 and 2x − 2y + z + 9 = 0.

 

The distance between the planes 2x + 2y − z + 2 = 0 and 4x + 4y − 2z + 5 = 0 is 

 

 

 

 
 

The image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0 is


If a plane passes through the point (1, 1, 1) and is perpendicular to the line \[\frac{x - 1}{3} = \frac{y - 1}{0} = \frac{z - 1}{4}\] then its perpendicular distance from the origin is ______.


Write the coordinates of the point which is the reflection of the point (α, β,  γ) in the XZ-plane.


Find the distance of the point `4hat"i" - 3hat"j" + hat"k"` from the plane `bar"r".(2hat"i" + 3hat"j" - 6hat"k")` = 21.


Find the distance of the point (1, 1 –1) from the plane 3x +4y – 12z + 20 = 0.


Solve the following:

Find the distance of the point `3hat"i" + 3hat"j" + hat"k"` from the plane `bar"r".(2hat"i" + 3hat"j" + 6hat"k")` = 21.


The equation of the plane passing through (3, 1, 2) and making equal intercepts on the coordinate axes is _______.


If the foot of perpendicular drawn from the origin to the plane is (3, 2, 1), then the equation of plane is ____________.


Find the distance of the point whose position vector is `(2hat"i" + hat"j" - hat"k")` from the plane `vec"r" * (hat"i" - 2hat"j" + 4hat"k")` = 9


Find the distance of the point (– 2, 4, – 5) from the line `(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


Distance of the point (α, β, γ) from y-axis is ____________.


The distance of the plane `vec"r" *(2/7hat"i" + 3/4hat"j" - 6/7hat"k")` = 1 from the origin is ______.


Find the equation of the plane passing through the point (1, 1, 1) and is perpendicular to the line `("x" - 1)/3 = ("y" - 2)/0 = ("z" - 3)/4`. Also, find the distance of this plane from the origin.


Find the foot of the perpendicular from the point (1, 2, 0) upon the plane x – 3y + 2z = 9. Hence, find the distance of the point (1, 2, 0) from the given plane.


Which one of the following statements is correct for a moving body?


S and S are the focii of the ellipse `x^2/a^2 + y^2/b^2 - 1` whose one of the ends of the minor axis is the point B If ∠SBS' = 90°, then the eccentricity of the ellipse is


A stone is dropped from the top of a cliff 40 m high and at the same instant another stone is shot vertically up from the foot of the cliff with a velocity 20 m per sec. Both stones meet each other after


The fuel charges for running a train are proportional to the square of the speed generated in miles per hour and costs ₹ 48 per hour at 16 miles per hour. The most economical speed if the fixed charges i.e. salaries etc. amount to ₹ 300 per hour is


`phi` is the angle of the incline when a block of mass m just starts slipping down. The distance covered by the block if thrown up the incline with an initial speed u0 is


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are


Find the distance of the point (2, 3, 4) measured along the line `(x - 4)/3 = (y + 5)/6 = (z + 1)/2` from the plane 3x + 2y + 2z + 5 = 0.


If the distance of the point (1, 1, 1) from the plane x – y + z + λ = 0 is `5/sqrt(3)`, find the value(s) of λ.


Find the distance of the point (1, –2, 0) from the point of the line `vecr = 4hati + 2hatj + 7hatk + λ(3hati + 4hatj + 2hatk)` and the point `vecr.(hati - hatj + hatk)` = 10.


Find the coordinates of points on line `x/1 = (y - 1)/2 = (z + 1)/2` which are at a distance of `sqrt(11)` units from origin.


If the points (1, 1, λ) and (–3, 0, 1) are equidistant from the plane `barr*(3hati + 4hatj - 12hatk) + 13` = 0, find the value of λ.


Find the equations of the planes parallel to the plane x – 2y + 2z – 4 = 0 which is a unit distance from the point (1, 2, 3).


In the figure given below, if the coordinates of the point P are (a, b, c), then what are the perpendicular distances of P from XY, YZ and ZX planes respectively?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×