Advertisements
Advertisements
प्रश्न
Find the seventh term of the G.P. :
`sqrt(3) + 1, 1, (sqrt(3) - 1)/2, .........`
उत्तर
Given G.P. : `sqrt(3) + 1, 1, (sqrt(3) - 1)/2, .........`
Here,
First term, a = `sqrt(3) + 1`
Common ratio, r = `1/(sqrt(3) + 1)`
Now, Tn = arn – 1
`\implies` T7 = `(sqrt(3) + 1) xx (1/(sqrt(3) + 1))^(7 - 1)`
= `(sqrt(3) + 1) xx (1/(sqrt(3) + 1))^6`
= `(sqrt(3) + 1)/1 xx 1/(sqrt(3) + 1)^6`
= `1/(sqrt(3) + 1)^5`
= `1/(sqrt(3) + 1)^5 xx (sqrt(3) - 1)^5/(sqrt(3) - 1)^5`
= `(sqrt(3) - 1)^5/[(sqrt(3) + 1)(sqrt(3) - 1)]^5`
= `(sqrt(3) - 1)^5/(3 - 1)^5`
= `(sqrt(3) - 1)^5/(2)^5`
= `(sqrt(3) - 1)^5/32`
APPEARS IN
संबंधित प्रश्न
Find the 10th term of the G.P. :
`12, 4, 1 1/3, ................`
A geometric progression has common ratio = 3 and last term = 486. If the sum of its terms is 728; find its first term.
Q 10.1
Q 10.4
If the sum of 1 + 2 + 22 + ....... + 2n – 1 is 255, find the value of n.
Q 1.1
Q 1.4
Q 3.1
Q 3.2
Q 5