Advertisements
Advertisements
प्रश्न
Find the seventh term of the G.P. :
`sqrt(3) + 1, 1, (sqrt(3) - 1)/2, .........`
उत्तर
Given G.P. : `sqrt(3) + 1, 1, (sqrt(3) - 1)/2, .........`
Here,
First term, a = `sqrt(3) + 1`
Common ratio, r = `1/(sqrt(3) + 1)`
Now, Tn = arn – 1
`\implies` T7 = `(sqrt(3) + 1) xx (1/(sqrt(3) + 1))^(7 - 1)`
= `(sqrt(3) + 1) xx (1/(sqrt(3) + 1))^6`
= `(sqrt(3) + 1)/1 xx 1/(sqrt(3) + 1)^6`
= `1/(sqrt(3) + 1)^5`
= `1/(sqrt(3) + 1)^5 xx (sqrt(3) - 1)^5/(sqrt(3) - 1)^5`
= `(sqrt(3) - 1)^5/[(sqrt(3) + 1)(sqrt(3) - 1)]^5`
= `(sqrt(3) - 1)^5/(3 - 1)^5`
= `(sqrt(3) - 1)^5/(2)^5`
= `(sqrt(3) - 1)^5/32`
APPEARS IN
संबंधित प्रश्न
The 4th and the 7th terms of a G.P. are `1/27` and `1/729` respectively. Find the sum of n terms of this G.P.
Q 10.1
Q 10.2
Q 10.3
Q 1.1
Q 1.3
Q 3.1
Q 3.3
Q 4
15, 30, 60, 120.... are in G.P. (Geometric Progression):
- Find the nth term of this G.P. in terms of n.
- How many terms of the above G.P. will give the sum 945?