Advertisements
Advertisements
प्रश्न
From one footwear shop, 12 pairs of chappals were sold. The sizes of these chappals are given below.
7, 8, 6, 7, 7, 5, 9, 7, 6, 7, 8, 7
Find their mode.
उत्तर
Given data is 7, 8, 6, 7, 7, 5, 9, 7, 6, 7, 8, 7.
Arrange these numbers in ascending order
5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9
As 7 appears most number of times.
∴ Mode = 7
Hence, the mode is 7.
APPEARS IN
संबंधित प्रश्न
The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.
Runs scored | Number of batsmen |
3000 − 4000 | 4 |
4000 − 5000 | 18 |
5000 − 6000 | 9 |
6000 − 7000 | 7 |
7000 − 8000 | 6 |
8000 − 9000 | 3 |
9000 − 10000 | 1 |
10000 − 11000 | 1 |
Find the mode of the data.
Find the mode of the following data:
3, 3, 7, 4, 5, 3, 5, 6, 8, 9, 5, 3, 5, 3, 6, 9, 7, 4
Find the mode of the following distribution.
Class-interval: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 |
Frequency: | 5 | 8 | 7 | 12 | 28 | 20 | 10 | 10 |
The following table gives the daily income of 50 workers of a factory:
Daily income (in Rs) | 100 - 120 | 120 - 140 | 140 - 160 | 160 - 180 | 180 - 200 |
Number of workers: | 12 | 14 | 8 | 6 | 10 |
Find the mean, mode and median of the above data.
Compute the mode from the following series:
Size | 45 – 55 | 55 – 65 | 65 – 75 | 75 – 85 | 85 – 95 | 95 – 105 | 105 - 115 |
Frequency | 7 | 12 | 17 | 30 | 32 | 6 | 10 |
Compute the mode from the following data:
Class interval | 1 – 5 | 6 – 10 | 11 – 15 | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 36 – 40 | 41 – 45 | 46 – 50 |
Frequency | 3 | 8 | 13 | 18 | 28 | 20 | 13 | 8 | 6 | 4 |
The agewise participation of students in the annual function of a school is shown in the following distribution.
Age (in years) | 5 - 7 | 7 - 9 | 9 - 11 | 11 – 13 | 13 – 15 | 15 – 17 | 17 – 19 |
Number of students | x | 15 | 18 | 30 | 50 | 48 | x |
Find the missing frequencies when the sum of frequencies is 181. Also find the mode of the data.
The following frequency table shows the demand for a sweet and the number of customers. Find the mode of demand of sweet.
Weight of sweet (gram)
|
0 - 250 | 250 - 500 | 500 - 750 | 750 - 1000 | 1000 - 1250 |
No. of customers | 10 | 60 | 25 | 20 | 15 |
Calculate the mode of the following distribution:
Class | 10 − 15 | 15 − 20 | 20 − 25 | 25 − 30 | 30 − 35 |
Frequency | 4 | 7 | 20 | 8 | 1 |
State the modal class.
Class Interval | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 - 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
Find the mode of the following distribution:
Weight (in kgs) | 25 − 34 | 35 − 44 | 45 − 54 | 55 − 64 | 65 − 74 | 75 − 84 |
Number of students | 4 | 8 | 10 | 14 | 8 | 6 |
In the formula `x-a+(sumf_i d_i)/(sumf_i),` for finding the mean of grouped data d1's are deviations from the ______.
If xi's are the midpoints of the class intervals of grouped data, fi's are the corresponding frequencies and `barx` is the mean, then `sum(f_ix_i-barx)` is equal to ______.
Which of the following is not a measure of central tendency?
For the following distribution:
Class | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 |
Frequency | 10 | 15 | 12 | 20 | 9 |
The sum of lower limits of the median class and modal class is:
The weight of coffee in 70 packets are shown in the following table:
Weight (in g) | Number of packets |
200 – 201 | 12 |
201 – 202 | 26 |
202 – 203 | 20 |
203 – 204 | 9 |
204 – 205 | 2 |
205 – 206 | 1 |
Determine the modal weight.
If L = 10, f1 = 70, f0 = 58, f2 = 42, h = 2, then find the mode by using formula.
The mode of a grouped frequency distribution is 75 and the modal class is 65-80. The frequency of the class preceding the modal class is 6 and the frequency of the class succeeding the modal class is 8. Find the frequency of the modal class.
The frequency distribution of daily working expenditure of families in a locality is as follows:
Expenditure in ₹ (x): |
0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 |
No. of families (f): |
24 | 33 | 37 | b | 25 |
If the mode of the distribution is ₹ 140 then the value of b is ______.