Advertisements
Advertisements
Question
From one footwear shop, 12 pairs of chappals were sold. The sizes of these chappals are given below.
7, 8, 6, 7, 7, 5, 9, 7, 6, 7, 8, 7
Find their mode.
Solution
Given data is 7, 8, 6, 7, 7, 5, 9, 7, 6, 7, 8, 7.
Arrange these numbers in ascending order
5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9
As 7 appears most number of times.
∴ Mode = 7
Hence, the mode is 7.
APPEARS IN
RELATED QUESTIONS
Find the mode of the following distribution.
Class-interval: | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 |
Frequency: | 30 | 45 | 75 | 35 | 25 | 15 |
Compare the modal ages of two groups of students appearing for an entrance test:
Age (in years): | 16-18 | 18-20 | 20-22 | 22-24 | 24-26 |
Group A: | 50 | 78 | 46 | 28 | 23 |
Group B: | 54 | 89 | 40 | 25 | 17 |
Find the mean, median and mode of the following data:
Classes: | 0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 | 250 – 300 | 300 – 350 |
Frequency: | 2 | 3 | 5 | 6 | 5 | 3 | 1 |
Heights of students of class X are givee in the flowing frequency distribution
Height (in cm) | 150 – 155 | 155 – 160 | 160 – 165 | 165 – 170 | 170 - 175 |
Number of students | 15 | 8 | 20 | 12 | 5 |
Find the modal height.
Also, find the mean height. Compared and interpret the two measures of central tendency.
The agewise participation of students in the annual function of a school is shown in the following distribution.
Age (in years) | 5 - 7 | 7 - 9 | 9 - 11 | 11 – 13 | 13 – 15 | 15 – 17 | 17 – 19 |
Number of students | x | 15 | 18 | 30 | 50 | 48 | x |
Find the missing frequencies when the sum of frequencies is 181. Also find the mode of the data.
Mode is
Find the mode from the following information:
L = 10, h = 2, f0 = 58, f1 = 70, f2 = 42.
Find the mode of the following frequency distribution:
x | 10 | 11 | 12 | 13 | 14 | 15 |
f | 1 | 4 | 7 | 5 | 9 | 3 |
A study of the yield of 150 tomato plants, resulted in the record:
Tomatoes per Plant | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 | 21 - 25 |
Number of Plants | 20 | 50 | 46 | 22 | 12 |
What is the frequency of the class preceding the modal class?
The monthly salary of 10 employees in a factory are given below:
₹ 5000, ₹ 7000, ₹ 5000, ₹ 7000, ₹ 8000, ₹ 7000, ₹ 7000, ₹ 8000, ₹ 7000, ₹ 5000
Find the mean, median and mode
In the formula `x-a+(sumf_i d_i)/(sumf_i),` for finding the mean of grouped data d1's are deviations from the ______.
Construction of a cumulative frequency table is useful in determining the ______.
Mode is the value of the variable which has ______.
There are lottery tickets labelled numbers from 1 to 500. I want to find the number which is most common in the lottery tickets. What quantity do I need to use?
Which of the following is not a measure of central tendency?
For the following distribution:
Marks | Number of students |
Below 10 | 3 |
Below 20 | 12 |
Below 30 | 27 |
Below 40 | 57 |
Below 50 | 75 |
Below 60 | 80 |
The modal class is ______.
The weight of coffee in 70 packets are shown in the following table:
Weight (in g) | Number of packets |
200 – 201 | 12 |
201 – 202 | 26 |
202 – 203 | 20 |
203 – 204 | 9 |
204 – 205 | 2 |
205 – 206 | 1 |
Determine the modal weight.
For the following frequency distribution, find the mode:
Class | 25 – 30 | 30 – 35 | 35 – 40 | 40 – 45 | 45 – 50 |
Frequency | 12 | 5 | 14 | 8 | 9 |
The following frequency distribution table shows the classification of the number of vehicles and the volume of petrol filled in them. To find the mode of the volume of petrol filled, complete the following activity:
Class (Petrol filled in Liters) |
Frequency (Number of Vehicles) |
0.5 - 3.5 | 33 |
3.5 - 6.5 | 40 |
6.5 - 9.5 | 27 |
9.5 - 12.5 | 18 |
12.5 - 15.5 | 12 |
Activity:
From the given table,
Modal class = `square`
∴ Mode = `square + [(f_1 - f_0)/(2f_1 -f_0 - square)] xx h`
∴ Mode = `3.5 + [(40 - 33)/(2(40) - 33 - 27)] xx square`
∴ Mode = `3.5 +[7/(80 - 60)] xx 3`
∴ Mode = `square`
∴ The mode of the volume of petrol filled is `square`.