Advertisements
Advertisements
प्रश्न
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
सभी प्राकृत संख्याओं n ≥ 2 के लिए, `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`
उत्तर
मान लीजिए कि प्रदत्त कथन P(n) है, अर्थात् सभी प्राकृत संख्या n ≥ 2 के लिए,
P(n) : `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`
हम देखते हैं कि P(2) सत्य है, क्योंकि
`(1 - 1/2^2) = 1 - 1/4`
= `(4 - 1)/4`
= `3/4`
= `(2 + 1)/(2 xx 2)`
मान लीजिए कि किसी k ∈ N के लिए P(n) सत्य है, अर्थात्,
P(k) : `1 - 1/2^2 . 1 - 1/3^2 ... 1 - 1/k^2 = (k + 1)/(2k)`
अब P(k + 1) को सत्य सिद्ध करने के लिए हम देखते हैं कि,
`1 - 1/2^2 . 1 - 1/3^2 ... 1 - 1/k^2 . 1 - 1/(k + 1)^2`
= `(k + 1)/(2k)(1 - 1/(k + 1)^2)`
= `(k^2 + 2k)/(2k(k + 1))`
= `((k + 1) + 1)/(2(k + 1))`
अतएव जब कभी P(k) सत्य है P(k + 1) भी सत्य है।
अतः गणितीय आगमन के सिद्धांत से सभी प्राकृत संख्याओं n ≥ 2 के लिए, P(n) सत्य है।
APPEARS IN
संबंधित प्रश्न
सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2n + 1))/n^2) = (n + 1)^2`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1+2+ 3+...+n<1/8(2n +1)^2`
x2n – y2n, (x + y) से भाज्य है।
(2n + 7) < (n+ 3)2
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
1 + 3 + 5 + ... + (2n – 1) = n2
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
सभी प्राकृत संख्याओं n ≥ 2 के लिए सिद्ध कीजिए कि `sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`
किसी अनुक्रम a1, a2, a3... को इस प्रकार परिभाषित कीजिए कि a1 = 2, an = 5 an–1. जो सभी प्राकृत संख्याओं n ≥ 2 के लिए,
गणितीय आगमन के सिद्धांत का प्रयोग करके सिद्ध कीजिए कि सभी प्राकृत संख्याओं के लिए, अनुक्रम के पद, सूत्र an = 2.5n–1 को संतुष्ट करते हैं।
आगमन विधि द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्याओं n के लिए, sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β)
= `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`
मान लीजिए कि P(n) : “2n < (1 × 2 × 3 × ... × n)”, तो न्यूनतम धन पूर्णाक, जिसके लिए P(n) सत्य है,
बताइए कि गणितीय आगमन द्वारा कथन P(n) : 12 + 22 + ... + n2 = `(n(n + 1)(2n + 1))/6` की निम्नलिखित उपपत्ति सत्य है या असत्य है।
उपपत्ति गणितीय आगमन के सिद्धांत द्वारा n = 1 के लिए P(n) सत्य है, क्योंकि
`1^2 = 1 = (1(1 + 1)(2.1 + 1))/6` पुन: किसी k ≥ 1 के लिए k2 = `(k(k + 1)(2k + 1))/6`
अब हम सिद्ध करेंगे कि `(k + 1)^2 = ((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
किसी ऐसे कथन P(n) का उदाहरण दीजिए जो n के सभी मानों के लिए सत्य है। अपने उत्तर का औचित्य बताइए।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
प्रत्येक प्राकृत संख्या n के लिए, 4n − 1 संख्या 3 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 23n − 1, संख्या 7 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए 32n − 1 संख्या 8 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n ≥ 2 के लिए, `sqrtn<1/sqrt1+1/sqrt2+…+1/sqrtn`
सभी प्राकृत संख्या k ≥ 2 के लिए अनुक्रम d1, d2, d3 ..., d1 = 2 तथा `d_k = (d_{k - 1})/k` द्वारा परिभाषित है। सिद्ध कीजिए कि सभी n ∈ N के लिए, `d_n = 2/(n!)`.
सभी n ∈ N के लिए, सिद्ध कीजिए कि,
cosα + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`
सभी n ∈ N के लिए, सिद्ध कीजिए कि, cosθ cos2θ cos22θ ... cos2n−1θ = `(sin2^nθ)/(2^nsinθ)`.
सभी n ∈ N के लिए, सिद्ध कीजिए कि, `sintheta + sin2theta + sin3theta + ... + sinntheta = ((sin ntheta)/2 sin(n + 1)/2theta)/(sin theta/2)`
सभी प्राकृत संख्या n > 1 के लिए सिद्ध कीजिए कि `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`.