Advertisements
Advertisements
प्रश्न
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`
उत्तर
मान लीजिए `P(n) = a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`
n = 1 के लिए बायाँ पक्ष = a
दायाँ पक्ष = `(a(r^n - 1))/(r -1) = a`
⇒ P(n), n = 1 के लिए सत्य है।
मान लीजिए P(n), n = k के लिए सत्य है।
∴ `a + ar + ar^2 + ... + ar^(k -1) = (a(1 - r^k))/(1-r)`
(k +1) वॉ पद = `ar^k` को दोनों पक्षों में जोड़ने पर,
`a + ar + ar^2 + ... + ar^(k -1) = (a(1 - r^k))/(1 -r) + ar^k`
= `a [(1-r^k)/(1 - r) + r^k]`
= a`[(1 - r^k + r^k - r^k + 1)]/(1-r)`
= `(a(1 - r^(k+1)))/(1-r)`
⇒ P(n), n = k +1 के लिए भी सत्य है।
अतः गणितीय आगमन सिद्धांत के अनुसार P(n), n ϵ N, n के सभी मानों के लिए सत्य है।
APPEARS IN
संबंधित प्रश्न
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/4`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.2 + 2.22 + 3.22 + ………. + n.2n = (n – 1). 2n+1 + 2
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: `1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2n + 1))/n^2) = (n + 1)^2`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1+2+ 3+...+n<1/8(2n +1)^2`
n(n + 1)(n + 5), संख्या 3 का एक गुणज है।
102n-1 + 1, संख्या 11 से भाज्य है।
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
सभी प्राकृत संख्याओं n ≥ 2 के लिए, `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`
किसी अनुक्रम a1, a2, a3... को इस प्रकार परिभाषित कीजिए कि a1 = 2, an = 5 an–1. जो सभी प्राकृत संख्याओं n ≥ 2 के लिए,
गणितीय आगमन के सिद्धांत का प्रयोग करके सिद्ध कीजिए कि सभी प्राकृत संख्याओं के लिए, अनुक्रम के पद, सूत्र an = 2.5n–1 को संतुष्ट करते हैं।
आगमन विधि द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्याओं n के लिए, sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β)
= `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`
गणितीय आगमन के सिद्धान्त द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए, 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1
एक विद्यार्थी को किसी कथन P(n) को गणितीय आगमन द्वारा सिद्ध करने के लिए कहा गया। उसने सिद्ध किया कि, सभी k > 5 ∈ N के लिए P(k + 1) सत्य है, जब कभी P(k) सत्य है और यह कि P(5) भी सत्य है। इसके आधार पर उसने निष्कर्ष निकाला कि P(n) सत्य है,
एक ऐसे कथन P(n) का उदाहरण दीजिए, जो सभी n ≥ 4 के लिए सत्य है किंतु P(1), P(2) तथा P(3) सत्य नहीं है। अपने उत्तर का औचित्य भी बताइए।
किसी ऐसे कथन P(n) का उदाहरण दीजिए जो n के सभी मानों के लिए सत्य है। अपने उत्तर का औचित्य बताइए।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, n3 − 7n + 3, संख्या 3 भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
किसी प्राकृत संख्या n के लिए 7n − 2n संख्या 5 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
किसी प्राकृत संख्या n के लिए, xn − yn, x − y से भाज्य है, जहाँ x तथा y पूर्णांक है और x ≠ y.
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 2n < (n + 2)!
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n ≥ 2 के लिए, `sqrtn<1/sqrt1+1/sqrt2+…+1/sqrtn`
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 2 + 4 + 6 + ... + 2n = n2 + n.
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 1 + 2 + 22 + ... + 2n = 2n + 1 − 1.
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 1 + 5 + 9 + ... + (4n − 3) = n(2n − 1)
सभी प्राकृत संख्या k ≥ 2 के लिए, एक अनुक्रम a1, a2, a3 ...., a1 = 3 तथा ak = 7ak − 1 द्वारा परिभाषित है। सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए an = 3.7n−1.
सभी प्राकृत संख्या k ≥ 2 के लिए अनुक्रम d1, d2, d3 ..., d1 = 2 तथा `d_k = (d_{k - 1})/k` द्वारा परिभाषित है। सिद्ध कीजिए कि सभी n ∈ N के लिए, `d_n = 2/(n!)`.
सभी n ∈ N के लिए, सिद्ध कीजिए कि, `n^5/5 + n^3/3 + (7n)/15` एक प्राकृत संख्या है।
सभी प्राकृत संख्या n > 1 के लिए सिद्ध कीजिए कि `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`.