हिंदी

हल कीजिए: 5x – 3 < 7, जब x एक पूर्णांक है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

हल कीजिए: 5x – 3 < 7, जब x एक पूर्णांक है।

योग

उत्तर

दी गई असमिका 5x– 3 < 7 है।

5x - 3 < 7

= 5x - 3 + 3 < 7 + 3

= 5x <10

= `(5x)/5 <10/5`

= x <2

2 से छोटे पूर्णांक हैं..., -4, -3, -2, -1, 0, 1.

इस प्रकार, जब x एक पूर्णांक है, तो दी गई असमिका का हल हैं …, -4, -3, -2, -1, 0, 1.

इसलिए, इस स्थिति में, हल समुच्चय {…, -4, -3, -2, -1, 0, 1} है।

shaalaa.com
एक चर राशि के रैखिक असमिकाओं का बीजगणितीय हल और उनका आलेखीय निरूपण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: रैखिक असमिकाएँ - प्रश्नावली 6.1 [पृष्ठ १३०]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 6 रैखिक असमिकाएँ
प्रश्नावली 6.1 | Q 3. (i) | पृष्ठ १३०

संबंधित प्रश्न

हल कीजिए: -12x > 30, जब x एक प्राकृत संख्या है।


हल कीजिए: -12x > 30, जब x एक पूर्णांक है।


हल कीजिए: 5x – 3 <7, जब x एक वास्तविक संख्या है।


हल कीजिए: 3x + 8 > 2, जब x एक पूर्णांक है।


हल कीजिए: 3x + 8 > 2, जब x एक वास्तविक संख्या है।


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3(x – 1) ≤ 2 (x – 3)


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3(2 – x) ≥ 2 (1 – x)


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `x/3 > x/2 + 1`


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `1/2 ((3x)/5 + 4) >= 1/3 (x -6)`


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 2(2x + 3) – 10 < 6 (x – 2)


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 37 – (3x + 5) ≥ 9x – 8(x – 3)


रवि ने पहली दो एकक परीक्षा में 70 और 75 अंक प्राप्त किए हैं। वह न्यूनतम अंक ज्ञात कीजिए, जिसे वह तीसरी एकक परीक्षा में पाकर 60 अंक का न्यूनतम औसत प्राप्त कर सके।


10 से कम क्रमागत विषम संख्याओं के ऐसे युग्म ज्ञात कीजिए जिनके योगफल 11 से अधिक हों।


एक त्रिभुज की सबसे बड़ी भुजा सबसे छोटी भुजा की तीन गुनी है तथा त्रिभुज की तीसरी भुजा सबसे बड़ी भुजा से 2 सेमी कम है। तीसरी भुजा की न्यूनतम लंबाई ज्ञात कीजिए जबकि त्रिभुज का परिमाप न्यूनतम 61 सेमी है।


एक व्यक्ति 91 सेमी लंबे बोर्ड में से तीन लंबाईयाँ काटना चाहता है। दूसरी लंबाई सबसे छोटो लंबाई से 3 सेमी अधिक और तीसरी लंबाई सबसे छोटी लंबाई की दूनी है। सबसे छोटे बोर्ड की संभावित लंबाई क्या है, यदि तीसरा टुकड़ा दूसरे टुकड़े से कम से कम 5 सेमी अधिक लंबा हो?

[संकेत: यदि सबसे छोटे बोर्ड की लंबाई x सेमी हो, तब (x + 3 ) सेमी और 2x सेमी क्रमश: दूसरे और तीसरे टुकड़ों की लंबाईयाँ हैं। इस प्रकार x + (x + 3) + 2x ≤ 91 और 2x ≥ (x + 3 ) + 5]


असमानता को हल कीजिए:

2 ≤ 3x – 4 ≤ 5


असमानता को हल कीजिए:

6 ≤ – 3 (2x – 4) < 12


असमिका को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

2(x – 1) < x + 5, 3(x + 2) > 2 – x


असमिकाओं को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

5(2x – 7) – 3(2x + 3) ≤ 0, 2x + 19 ≤ 6x + 47


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×