हिंदी

हल कीजिए: -12x > 30, जब x एक प्राकृत संख्या है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

हल कीजिए: -12x > 30, जब x एक प्राकृत संख्या है।

योग

उत्तर

दी गई असमिका -12x > 30 है।

- 12x > 30

⇒ `(-12x)/(-12) < 30/(-12)`  (दोनों पक्षों को एक ही ऋणात्मक संख्या से विभाजित करने पर)

⇒ x < `- 5/2`

(-5/2) से कम कोई प्राकृत संख्या नहीं है।

इस प्रकार, जब x एक प्राकृत संख्या है, तो दी गई असमिका का कोई हल नहीं है।

shaalaa.com
एक चर राशि के रैखिक असमिकाओं का बीजगणितीय हल और उनका आलेखीय निरूपण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: रैखिक असमिकाएँ - प्रश्नावली 6.1 [पृष्ठ १३०]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 6 रैखिक असमिकाएँ
प्रश्नावली 6.1 | Q 2. (i) | पृष्ठ १३०

संबंधित प्रश्न

हल कीजिए: 24x < 100, जब x एक प्राकृत संख्या है।


हल कीजिए 24x < 100, जब x एक पूर्णांक है।


हल कीजिए: -12x > 30, जब x एक पूर्णांक है।


हल कीजिए: 5x – 3 <7, जब x एक वास्तविक संख्या है।


हल कीजिए: 3x + 8 > 2, जब x एक पूर्णांक है।


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 4x + 3 < 6x + 7


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3x – 7 > 5x – 1


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3(x – 1) ≤ 2 (x – 3)


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3(2 – x) ≥ 2 (1 – x)


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: ` x +x/2` + `x/3` <11


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `x/3 > x/2 + 1`


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `1/2 ((3x)/5 + 4) >= 1/3 (x -6)`


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 37 – (3x + 5) ≥ 9x – 8(x – 3)


दी गई असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।

`x/2 >= (5x -2)/3 - (7x - 3)/5`


रवि ने पहली दो एकक परीक्षा में 70 और 75 अंक प्राप्त किए हैं। वह न्यूनतम अंक ज्ञात कीजिए, जिसे वह तीसरी एकक परीक्षा में पाकर 60 अंक का न्यूनतम औसत प्राप्त कर सके।


किसी पाठ्यक्रम में ग्रेड 'A' पाने के लिए एक व्यक्ति को सभी पाँच परीक्षाओं (प्रत्येक 100 अंकों में से) में 90 अंक या अधिक अंक का औसत प्राप्त करना चाहिए यदि सुनीता के प्रथम चार परीक्षाओं के प्राप्तांक 87,92, 94 और 95 हों तो वह न्यूनतम अंक ज्ञात कीजिए जिसे पांचवीं परीक्षा में प्राप्त करके सुनीता उस पाठ्यक्रम में ग्रेड 'A' पाएगी।


असमानता को हल कीजिए:

2 ≤ 3x – 4 ≤ 5


असमिका को हल कीजिए:

`-12 < 4 - (3x)/(-5) <= 2`


असमानता को हल कीजिए:

`7 <= (3x + 11)/2 <= 11`


असमिकाओं को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

3x – 7 > 2(x -6), 6 – x > 11 – 2x


असमिकाओं को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

5(2x – 7) – 3(2x + 3) ≤ 0, 2x + 19 ≤ 6x + 47


ऐसी रैखिक असमिकाएँ ज्ञात कीजिए जिनका हल समुच्चय नीचे प्रदर्शित आकृति का छायांकित भाग है।

 


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×