Advertisements
Advertisements
प्रश्न
If [aij]3×3, where aij = 2(i – j), find A and AT. State whether A and AT both are symmetric or skew-symmetric matrices?
उत्तर
A = `["a"_"ij"]_(3xx3) = [("a"_11, "a"_12, "a"_13),("a"_21, "a"_22, "a"_23),("a"_31, "a"_32, "a"_33)]`
Given, aij = 2 (i – j)
∴ a11 = 2(1 – 1) = 0,
a12 = 2(1 – 2) = –2
a13 = 2(1 – 3) = –4,
a21 = 2(2 – 1) = 2,
a22 = 2(2 – 2) = 0,
a23 = 2(2 – 3) = –2,
a31 = 2(3 – 1) = 4,
a32 = 2(3 – 2) = 2,
a33 = 2(3 – 3) = 0
∴ A = `[(0, -2, -4),(2, 0, -2),(4, 2, 0)]`
∴ AT = `[(0, 2, 4),(-2, 0, -2),(-4, -2, 0)]`
`-[(0, -2, -4),(2, 0, -2),(4, 2, 0)] = - "A"`
∴ AT = – A and A = – AT
∴ A and AT both are skew-symmetric matrices.
APPEARS IN
संबंधित प्रश्न
Solve the following equations by reduction method:
x+ y+z = 6,
3x-y+3z = 10
5x+ y-4z = 3
If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`
Verify that |AB| = |A|.|B|
Solve the following equations by reduclion method
x+3y+3z= 16 , x+4y+4z=21 , x+3y+4z = 19
Solve the following equations by reduction method :
x + 2y + z = 8
2x+ 3y - z = 11
3x - y - 2z = 5
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that (A + B) + C = A + (B + C)
If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]` , then find the matrix A − 2B + 6I, where I is the unit matrix of order 2.
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, find (AT)T.
Find a, b, c, if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.
For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.
`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.
`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`
Construct the matrix A = [aij]3×3 where aij = i − j. State whether A is symmetric or skew-symmetric.
Solve the following equations for X and Y, if 3X − Y = `[(1, -1),(-1, 1)]` and X – 3Y = `[(0, -1),(0, -1)]`.
Find AT, if A = `[(1, 3),(-4, 5)]`
If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, prove that AT = A.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A – C)T = AT – CT.
If A = `[(1, 0, 1),(3, 1, 2)], "B" = [(2, 1, -4),(3, 5, -2)] "and" "C" = [(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + CT.
If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = ATBT.
Fill in the blank:
A = `[(3),(1)]` is ........................ matrix.
Fill in the blank :
If A = `[(4, x),(6, 3)]` is a singular matrix, then x is _______
If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix
Simplify, `costheta[(costheta, sintheta),(-sintheta, costheta)] + sintheta[(sintheta, -costheta),(costheta, sintheta)]`
Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] + [(-1, 6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`
There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subject – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.
July sales (in Rupees), Physics Chemistry Mathematics.
A = `[(5600, 6750, 8500),(6650, 7055, 8905)]"First Row Suresh"/"Second Row Ganesh"`
August sales(in Rupees), Physics Chemistry Mathematics
B = `[(6650, 7055, 8905),(7000, 7500, 10200)]"First Row Suresh"/"Second Row Ganesh"` then,
Find the increase in sales in Rupees from July to August 2017.
Answer the following question:
Find matrices A and B, where 2A – B = `[(1, -1),(0, 1)]` and A + 3B = `[(1, -1),(0, 1)]`
Choose the correct alternative:
If A = `[(1, 3/5, x),(y, -5, -7),(-4, -7, 0)]` is a symmetric matrix, then the values of x and y are ______ respectively.
Choose the correct alternative:
`[(3, 2, 1)][(2),(-2),(-1)]` = ______
Choose the correct alternative:
If A and B are two square matrices of order 3, then (AB)T = ______
State whether the following statement is True or False:
Every square matrix of order n can be expressed as sum of symmetric and skew symmetric matrix
State whether the following statement is True or False:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]` is a skew symmetric matrix
In a Skew symmetric matrix, all diagonal elements are ______