हिंदी

If the Length of a Median of an Equilateral Triangle is X Cm, Then Its Area is - Mathematics

Advertisements
Advertisements

प्रश्न

If the length of a median of an equilateral triangle is x cm, then its area is

विकल्प

  • x2

  • \[\frac{\sqrt{3}}{2} x^2\]

     

  • \[\frac{x^2}{\sqrt{3}}\]

     

  • \[\frac{x^2}{2}\]

     

MCQ

उत्तर

We are given the length of median of an equilateral triangle by which we can calculate its side. We are asked to find area of triangle in terms of x

Altitude of an equilateral triangle say L, having equal sides of cm is given by, where, L = x cm

`x = sqrt(3)/2 a`

`a = 2/sqrt(3) x  cm `

Area of an equilateral triangle, say A1 having each side a cm is given by 

`A_1 = sqrt(3)/4 a^2`

Since `a = 2/sqrt(3) x  cm `.So

`A_1 = sqrt (3)/4 (2/sqrt(3) x )^2`

`A_1 = sqrt(3)/4 xx (4x^2)/3`

`A_1 = x^2/sqrt(3)`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Heron’s Formula - Exercise 17.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 17 Heron’s Formula
Exercise 17.4 | Q 13 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×