Advertisements
Advertisements
Question
If the length of a median of an equilateral triangle is x cm, then its area is
Options
x2
- \[\frac{\sqrt{3}}{2} x^2\]
- \[\frac{x^2}{\sqrt{3}}\]
- \[\frac{x^2}{2}\]
Solution
We are given the length of median of an equilateral triangle by which we can calculate its side. We are asked to find area of triangle in terms of x
Altitude of an equilateral triangle say L, having equal sides of a cm is given by, where, L = x cm
`x = sqrt(3)/2 a`
`a = 2/sqrt(3) x cm `
Area of an equilateral triangle, say A1 having each side a cm is given by
`A_1 = sqrt(3)/4 a^2`
Since `a = 2/sqrt(3) x cm `.So
`A_1 = sqrt (3)/4 (2/sqrt(3) x )^2`
`A_1 = sqrt(3)/4 xx (4x^2)/3`
`A_1 = x^2/sqrt(3)`
APPEARS IN
RELATED QUESTIONS
A park, in the shape of a quadrilateral ABCD, has ∠C = 90°, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m. How much area does it occupy?
Find the area of a quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm.
A park, in the shape of a quadrilateral ABCD, has ∠C = 900, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m How much area does it occupy?
Two parallel side of a trapezium are 60 cm and 77 cm and other sides are 25 cm and 26 cm. Find the area of the trapezium.
The sides of a triangle are 11 m, 60 m and 61 m. The altitude to the smallest side is
If the area of an isosceles right triangle is 8 cm2, what is the perimeter of the triangle?
The lengths of the sides of Δ ABC are consecutive integers. It Δ ABC has the same perimeter as an equilateral triangle with a side of length 9 cm, what is the length of the shortest side of ΔABC?
If every side of a triangle is doubled, then increase in the area of the triangle is
The length of each side of an equilateral triangle having an area of `9sqrt(3)`cm2 is ______.
If the area of an equilateral triangle is `16sqrt(3)` cm2, then the perimeter of the triangle is ______.