Advertisements
Advertisements
प्रश्न
If the mean of 8 , 14 , 20 , x and 12 is 13, find x.
उत्तर
Numbers are = 8, 14, 20, x, 12
Mean= 13
n = 5
`barx = (x_1 + x_2 + x_3 + .... + x_n)/n`
⇒ `13 = (8+ 14+20+x + 12 )/5`
⇒ `13 = (54+x )/5`
⇒ 54+X=65
⇒ x = 11
The value of x = 11
APPEARS IN
संबंधित प्रश्न
- Find the mean of 7, 11, 6, 5 and 6.
- If each number given in (a) is diminished by 2; find the new value of mean.
The following table gives the heights of plants in centimeter. If the mean height of plants is 60.95 cm; find the value of 'f'.
Height (cm) | 50 | 55 | 58 | 60 | 65 | 70 | 71 |
No. of plants | 2 | 4 | 10 | f | 5 | 4 | 3 |
Find the mode of following data, using a histogram:
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency | 5 | 12 | 20 | 9 | 4 |
The marks obtained by 120 students in a mathematics test is given below:
Marks | No. of students |
0 – 10 | 5 |
10 – 20 | 9 |
20 – 30 | 16 |
30 – 40 | 22 |
40 – 50 | 26 |
50 – 60 | 18 |
60 – 70 | 11 |
70 – 80 | 6 |
80 – 90 | 4 |
90 – 100 | 3 |
Draw an ogive for the given distributions on a graph sheet. Use a suitable scale for your ogive. Use your ogive to estimate:
- the median
- the number of student who obtained more than 75% in test.
- the number of students who did not pass in the test if the pass percentage was 40.
- the lower quartile.
Find the mean of the following frequency distribution by the short cut method :
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 9 | 12 | 15 | 10 | 14 |
The weights of 11 students in a class are 36 kg, 45 kg, 44 kg, 37 kg, 36 kg, 41 kg, 45 kg, 43 kg, 39 kg, 42 kg and 40 kg. Find the median of their weights.
Estimate the median, the lower quartile and the upper quartile of the following frequency distribution by drawing an ogive:
Marks(more than) | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
No. of students | 6 | 13 | 22 | 34 | 48 | 60 | 70 | 78 | 80 | 80 |
Find the median of:
241, 243, 347, 350, 327, 299, 261, 292, 271, 258 and 257
The following observations have been arranged in ascending order. If the median of these observations is 58, find the value of x.
24, 27, 43, 48, x - 1, x + 3, 68, 73, 80, 90
Find the mean of: 5, 2.4, 6.2, 8.9, 4.1 and 3.4