हिंदी

In a trapezium ABCD, side AB is parallel to side DC; and the diagonals AC and BD intersect each other at point P. Prove that : ΔAPB is similar to ΔCPD. PA × PD = PB × PC. - Mathematics

Advertisements
Advertisements

प्रश्न

In a trapezium ABCD, side AB is parallel to side DC; and the diagonals AC and BD intersect each other at point P. Prove that :

  1. ΔAPB is similar to ΔCPD.
  2. PA × PD = PB × PC. 
योग

उत्तर

In trapezium ABCD

AB || DC

Diagonals AC and BD intersect each other at P.


To prove:

  1. ΔAPB ∼ ΔCPD.
  2. PA × PD = PB × PC. 

Proof: In ΔAPB and ΔCPD

∠APB = ∠CPD   ...(Vertically opposite angles)

∠PAB = ∠PCD  ...(Alternate angles)

∴ ΔAPB ∼ ΔCPD  ...(AA axiom)

∴ `(PA)/(PC) = (PB)/(PD)`

`\implies` PA × PD = PB × PC

Hence proved.

shaalaa.com
Areas of Similar Triangles Are Proportional to the Squares on Corresponding Sides
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Similarity (With Applications to Maps and Models) - Exercise 15 (A) [पृष्ठ २१३]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 15 Similarity (With Applications to Maps and Models)
Exercise 15 (A) | Q 2.1 | पृष्ठ २१३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×