हिंदी

In the given figure, P is a point in the interior of a parallelogram ABCD. Show that (i) ar (APB) + ar (PCD) = 1/2ar (ABCD) (ii) ar (APD) + ar (PBC) = ar (APB) + ar (PCD) - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, P is a point in the interior of a parallelogram ABCD. Show that

(i) ar (APB) + ar (PCD) = 1/2ar (ABCD)

(ii) ar (APD) + ar (PBC) = ar (APB) + ar (PCD)

[Hint: Through. P, draw a line parallel to AB]

उत्तर

(i) Let us draw a line segment EF, passing through point P and parallel to line segment AB.

In parallelogram ABCD,

AB || EF (By construction) ... (1)

ABCD is a parallelogram.

∴ AD || BC (Opposite sides of a parallelogram)

⇒ AE || BF ... (2)

From equations (1) and (2), we obtain

AB || EF and AE || BF

Therefore, quadrilateral ABFE is a parallelogram.

It can be observed that ΔAPB and parallelogram ABFE are lying on the same base AB and between the same parallel lines AB and EF.

∴ Area (ΔAPB) = 1/2Area (ABFE) ... (3)

Similarly, for ΔPCD and parallelogram EFCD,

Area (ΔPCD) = 1/2Area (EFCD) ... (4)

Adding equations (3) and (4), we obtain

Area (ΔAPB) + Area (ΔPCD) = 1/2[Area (ABFE) + Area (EFCD)]

Area (ΔAPB) + Area (ΔPCD) = 1/2Area (ABCD)          ........(5)

 

(ii)

Let us draw a line segment MN, passing through point P and parallel to line segment AD.

In parallelogram ABCD,

MN || AD (By construction)                  ... (6)

ABCD is a parallelogram.

∴ AB || DC (Opposite sides of a parallelogram)

⇒ AM || DN                  ... (7)

From equations (6) and (7), we obtain

MN || AD and AM || DN

Therefore, quadrilateral AMND is a parallelogram.

It can be observed that ΔAPD and parallelogram AMND are lying on the same base AD and between the same parallel lines AD and MN.

∴ Area (ΔAPD) = 1/2Area (AMND)                      ... (8)

Similarly, for ΔPCB and parallelogram MNCB,

Area (ΔPCB) = 1/2Area (MNCB)                    ... (9)

Adding equations (8) and (9), we obtain

Area (ΔAPD) + Area (ΔPCB) = 1/2[Area (AMND) + Area (MNCB)]

Area (ΔAPD) + Area (ΔPCB) = 1/2Area (ABCD)        ...........(10)

On comparing equations (5) and (10), we obtain

Area (ΔAPD) + Area (ΔPBC) = Area (ΔAPB) + Area (ΔPCD)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Areas of Parallelograms and Triangles - Exercise 9.2 [पृष्ठ १५९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 9 Areas of Parallelograms and Triangles
Exercise 9.2 | Q 4 | पृष्ठ १५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In the given figure, ABCD is parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.


Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.


In the following figure, ABCD is parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that

ar (BPC) = ar (DPQ).

[Hint: Join AC.]


In the given below fig. ABCD, ABFE and CDEF are parallelograms. Prove that ar (ΔADE)
= ar (ΔBCF)


ABCD is a parallelogram, G is the point on AB such that AG = 2 GB, E is a point of DC
such that CE = 2DE and F is the point of BC such that BF = 2FC. Prove that:

(1)  ar ( ADEG) = ar (GBCD)

 (2)  ar (ΔEGB) = `1/6` ar (ABCD)

 (3)  ar (ΔEFC) = `1/2` ar (ΔEBF)

 (4)  ar (ΔEBG)  = ar (ΔEFC)

 (5)ΔFind what portion of the area of parallelogram is the area of EFG.


In which of the following figures, you find two polygons on the same base and between the same parallels?


Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is ______.


PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm. A is any point on PQ. If PS = 5 cm, then ar (PAS) = 30 cm2.


In the following figure, PSDA is a parallelogram. Points Q and R are taken on PS such that PQ = QR = RS and PA || QB || RC. Prove that ar (PQE) = ar (CFD).


If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram so formed will be half of the area of the given quadrilateral (Figure).

[Hint: Join BD and draw perpendicular from A on BD.]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×