हिंदी

PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm. A is any point on PQ. If PS = 5 cm, then ar (PAS) = 30 cm2. - Mathematics

Advertisements
Advertisements

प्रश्न

PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm. A is any point on PQ. If PS = 5 cm, then ar (PAS) = 30 cm2.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is True.

Explanation:

Given, PS = 5 cm

Radius of circle = SQ = 13 cm

In right-angled ΔSPQ,

SQ2 = PQ2 + PS2   ...[By Pythagoras theorem]

(13)2 = PQ2 + (5)2

⇒ PQ2 = 169 – 25 = 144

⇒ PQ = 12 cm  ...[Taking positive square root, because length is always positive]

Now, area of ΔAPS = `1/2` × Base × Height

= `1/2 xx PS xx PQ`

= `1/2 xx 5 xx 12`

= 30 cm

So, given statement is true, if A coincides Q.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Areas of Parallelograms & Triangles - Exercise 9.2 [पृष्ठ ८८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
अध्याय 9 Areas of Parallelograms & Triangles
Exercise 9.2 | Q 2. | पृष्ठ ८८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In the given figure, ABCD is parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.


In the given figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that

(i) ar (PQRS) = ar (ABRS)

(ii) ar (AXS) = 1/2ar (PQRS)


A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?


In the following figure, ABCD, DCFE and ABFE are parallelograms. Show that ar (ADE) = ar (BCF).


In the following figure, ABCD is parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that

ar (BPC) = ar (DPQ).

[Hint: Join AC.]


In the below fig. ABCD and AEFD are two parallelograms. Prove that
(1) PE = FQ
(2) ar (Δ APE) : ar (ΔPFA) = ar Δ(QFD) : ar (Δ PFD)
(3) ar (ΔPEA) = ar (ΔQFD)


ABCD is a square. E and F are respectively the mid-points of BC and CD. If R is the mid-point of EF (Figure), prove that ar (AER) = ar (AFR)


ABCD is a parallelogram in which BC is produced to E such that CE = BC (Figure). AE intersects CD at F. If ar (DFB) = 3 cm2, find the area of the parallelogram ABCD.


The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect AD at P and BC at Q. Show that PQ divides the parallelogram into two parts of equal area.


ABCD is a trapezium in which AB || DC, DC = 30 cm and AB = 50 cm. If X and Y are, respectively the mid-points of AD and BC, prove that ar (DCYX) = `7/9` ar (XYBA)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×