Advertisements
Advertisements
प्रश्न
In how many of the distinct permutations of the letters in MISSISSIPPI do the four I’s not come together?
उत्तर
In the given word MISSISSIPPI, I appears 4 times, S appears 4 times, P appears 2 times, and M appears just once.
Therefore, number of distinct permutations of the letters in the given word
= `(11!)/(4!4!2!)`
= `(11 xx 10 xx 9 xx 8 xx 7 xx 6 xx 5 xx 4!)/(4! xx 4 xx 3 xx 2 xx 1 xx 2 xx 1)`
= `(11 xx 10 xx 9 xx 8 xx 7 xx 6 xx 5)/(4 xx 3 xx 2 xx 1xx 2 xx 1)`
= 34650
There are 4 Is in the given word. When they occur together, they are treated as a single object for the time being. This single object, together with the remaining 7 objects, will account for 8 objects.
These 8 objects, in which there are 4 Ss and 2 Ps, can be arranged in `(8!)/(4!2!)` ways, i.e.,
840 ways.
Number of arrangements where all Is occur together = 840
Thus, number of distinct permutations of the letters in MISSISSIPPI in which four Is do not come together = 34650 – 840 = 33810
APPEARS IN
संबंधित प्रश्न
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
Find r if `""^5P_r = 2^6 P_(r-1)`
Which of the following are true:
(2 × 3)! = 2! × 3!
If three six faced die each marked with numbers 1 to 6 on six faces, are thrown find the total number of possible outcomes ?
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
In how many ways can 4 letters be posted in 5 letter boxes?
In how many ways 4 women draw water from 4 taps, if no tap remains unused?
Write the remainder obtained when 1! + 2! + 3! + ... + 200! is divided by 14 ?
The number of five-digit telephone numbers having at least one of their digits repeated is
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is
The product of r consecutive positive integers is divisible by
The number of different ways in which 8 persons can stand in a row so that between two particular persons A and B there are always two persons, is
The number of ways in which the letters of the word ARTICLE can be arranged so that even places are always occupied by consonants is
In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is
Find x if `1/(6!) + 1/(7!) = x/(8!)`
Evaluate `("n"!)/("r"!("n" - "r")!)` when n = 5 and r = 2.
If nP4 = 12(nP2), find n.
In how many ways 5 boys and 3 girls can be seated in a row, so that no two girls are together?
Find the rank of the word ‘CHAT’ in the dictionary.
Evaluate the following.
`((3!)! xx 2!)/(5!)`
The possible outcomes when a coin is tossed five times:
If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r
How many strings are there using the letters of the word INTERMEDIATE, if all the vowels are together
How many strings are there using the letters of the word INTERMEDIATE, if vowels are never together
How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many distinct 6-digit numbers are there?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
DANGER
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?
Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`
Find the number of different words that can be formed from the letters of the word ‘TRIANGLE’ so that no vowels are together
In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.
How many words (with or without dictionary meaning) can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
C1 | C2 |
(a) 4 letters are used at a time | (i) 720 |
(b) All letters are used at a time | (ii) 240 |
(c) All letters are used but the first is a vowel | (iii) 360 |
The number of permutations by taking all letters and keeping the vowels of the word ‘COMBINE’ in the odd places is ______.