Advertisements
Advertisements
प्रश्न
In a quadrilateral ABCD, ∠A + ∠C is 2 times ∠B + ∠D. If ∠A = 140° and ∠D = 60°, then ∠B=
विकल्प
60°
80°
120°
80°
None of these
उत्तर
ABCD is a quadrilateral, with ∠A +∠C = 2(∠B + ∠D) .
By angle sum property of a quadrilateral we get:
∠A +∠B +∠C +∠D = 360°
(∠A +∠C )+(∠B +∠D) = 360°
But,we have ∠A+∠C = 2(∠B +∠D)
2(∠A + ∠C = 360°
∠A + ∠C = 120°
Then,
∠B + ∠D = 60°
The two equations so formed cannot give us the value for ∠B with a given value of ∠A .
Hence the correct choice is (d).
APPEARS IN
संबंधित प्रश्न
P and Q are the points of trisection of the diagonal BD of a parallelogram AB Prove that CQ is parallel to AP. Prove also that AC bisects PQ.
In Fig. below, AB = AC and CP || BA and AP is the bisector of exterior ∠CAD of ΔABC.
Prove that (i) ∠PAC = ∠BCA (ii) ABCP is a parallelogram
In a parallelogram ABCD, write the sum of angles A and B.
In a parallelogram ABCD, if ∠D = 115°, then write the measure of ∠A.
In a parallelogram ABCD, if ∠A = (3x − 20)°, ∠B = (y + 15)°, ∠C = (x + 40)°, then find the values of xand y.
We get a rhombus by joining the mid-points of the sides of a
The figure formed by joining the mid-points of the adjacent sides of a rhombus is a
The figure formed by joining the mid-points of the adjacent sides of a parallelogram is a
In the given Figure, if AB = 2, BC = 6, AE = 6, BF = 8, CE = 7, and CF = 7, compute the ratio of the area of quadrilateral ABDE to the area of ΔCDF. (Use congruent property of triangles)
ABCD is a square, diagonals AC and BD meet at O. The number of pairs of congruent triangles with vertex O are