हिंदी

In a Quadrilateral Abcd, If the Perpendicular Bisectors of Ab and Ad Meet at P, Then Prove that Bp = Dp. - Mathematics

Advertisements
Advertisements

प्रश्न

In a quadrilateral ABCD, if the perpendicular bisectors of AB and AD meet at P, then prove that BP = DP. 

योग

उत्तर

Join A to P. 

In Δ AMPand Δ DMP 

MP = MP 

AM = MD 

∠ AMP = ∠ DMP = 90° 

Therefore, Δ AMPand Δ DMP are congruent. 

DP= AP ....... (i) 

In Δ ANP and Δ BNP 

NP= NP 

AN= NB 

∠ANP = ∠BNP = 90° 

Therefore, Δ ANP and Δ BNP are congruent. 

BP= AP ....... (ii) 

From (i) and (ii) 

BP= DP 

Hence, proved. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Loci - Exercise 16.1

APPEARS IN

फ्रैंक Mathematics - Part 2 [English] Class 10 ICSE
अध्याय 16 Loci
Exercise 16.1 | Q 18

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×