हिंदी

In quadrilateral ABCD, the diagonals AC and BD intersect each other at point O. If AO = 2CO and BO = 2DO; show that: OA × OD = OB × OC. - Mathematics

Advertisements
Advertisements

प्रश्न

In quadrilateral ABCD, the diagonals AC and BD intersect each other at point O. If AO = 2CO and BO = 2DO; show that: OA × OD = OB × OC.

योग

उत्तर


Since AO = 2CO and BO = 2DO,

`(AO)/(CO) = 2/1 = (BO)/(DO)`

So, OA × OD = OB × OC

shaalaa.com
Areas of Similar Triangles Are Proportional to the Squares on Corresponding Sides
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Similarity (With Applications to Maps and Models) - Exercise 15 (A) [पृष्ठ २१३]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 15 Similarity (With Applications to Maps and Models)
Exercise 15 (A) | Q 4.2 | पृष्ठ २१३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×