हिंदी

In the Adjoining Figure, the Medians Bd and Ce of a ∆Abc Meet at G. Prove that (I) ∆Egd ∼ ∆Cgb and (Ii) Bg = 2gd for (I) Above. - Mathematics

Advertisements
Advertisements

प्रश्न

In the adjoining figure, the medians BD and CE of a ∆ABC meet at G. Prove that

(i) ∆EGD ∼ ∆CGB and 
(ii) BG = 2GD for (i) above.

योग

उत्तर

Since D and E are mid-point of AC and AB respectively in ∆ABC, Ed is parallel to BC.

(i) In ∆'s EGD and CGB,
∠EGD = ∠CGB     ...(Vertically opp., angles)
∠EGD = ∠CBG     ...(Alternative angles)
So, ∆EGD ∼ ∆CGB.
Hence proved.
(ii) ∴ `"BG"/"GD" = "BC"/"DE"`
But `"BC"/"DE" = 2, "So" "BG"/"GD" = 2`
⇒ BG = 2GD.
Hence Proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Similarity - Prove the Following

APPEARS IN

आईसीएसई Mathematics [English] Class 10
अध्याय 13 Similarity
Prove the Following | Q 5
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×