हिंदी

In the figure, PQ ⊥ BC, AD ⊥ BC. To find the ratio of A(ΔPQB) and A(ΔPBC), complete the following activity. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In the figure, PQ ⊥ BC, AD ⊥ BC. To find the ratio of A(ΔPQB) and A(ΔPBC), complete the following activity.


Given: PQ ⊥ BC, AD ⊥ BC

Now, A(ΔPQB)  = `1/2 xx square xx square`

A(ΔPBC)  = `1/2 xx square xx square`

Therefore, 

`(A(ΔPQB))/(A(ΔPBC)) = (1/2 xx square xx square)/(1/2 xx square xx square)`

= `square/square`

रिक्त स्थान भरें
योग

उत्तर

Given: PQ ⊥ BC, AD ⊥ BC

Now, A(ΔPQB)  = `1/2` × BQ × PQ

A(ΔPBC)  = `1/2` × BC × PQ

Therefore, 

`(A(ΔPQB))/(A(ΔPBC)) = (1/2 xx bb(BQ) xx bb(PQ))/(1/2 xx bb(BC) xx bb(PQ))`

= `bb(BQ)/bb(BC)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (March) Model set 2 by shaalaa.com

संबंधित प्रश्न

The ratio of the areas of two triangles with the common base is 14 : 9. Height of the larger triangle is 7 cm, then find the corresponding height of the smaller triangle.


In the following figure RP: PK= 3:2, then find the value of A(ΔTRP):A(ΔTPK).


In the given figure, BC ⊥ AB, AD ⊥ AB, BC = 4, AD = 8, then find `("A"(∆"ABC"))/("A"(∆"ADB"))`


In adjoining figure, PQ ⊥ BC, AD ⊥ BC then find following ratios.

  1. `("A"(∆"PQB"))/("A"(∆"PBC"))`
  2. `("A"(∆"PBC"))/("A"(∆"ABC"))`
  3. `("A"(∆"ABC"))/("A"(∆"ADC"))`
  4. `("A"(∆"ADC"))/("A"(∆"PQC"))`

In trapezium ABCD, side AB || side DC, diagonals AC and BD intersect in point O. If AB = 20, DC = 6, OB = 15 then Find OD. 


In ∆ABC, B - D - C and BD = 7, BC = 20 then find following ratio. 

`"A(∆ ABD)"/"A(∆ ADC)"`


Ratio of areas of two triangles with equal heights is 2 : 3. If base of the smaller triangle is 6 cm then what is the corresponding base of the bigger triangle ?


In the figure, PM = 10 cm, A(∆PQS) = 100 sq.cm, A(∆QRS) = 110 sq. cm, then find NR.


The ratio of the areas of two triangles with the common base is 4 : 3. Height of the larger triangle is 2 cm, then find the corresponding height of the smaller triangle.


In ∆ABC, B – D – C and BD = 7, BC = 20, then find the following ratio.

`(A(∆ABD))/(A(∆ABC))`


In ∆ABC, B – D – C and BD = 7, BC = 20 then Find following ratio. 

\[\frac{A\left( ∆ ADC \right)}{A\left( ∆ ABC \right)}\] 


A roller of diameter 0.9 m and the length 1.8 m is used to press the ground. Find the area of the ground pressed by it in 500 revolutions.
`(pi=3.14)`


Areas of two similar triangles are in the ratio 144: 49. Find the ratio of their corresponding sides.


In fig., TP = 10 cm, PS = 6 cm. `"A(ΔRTP)"/"A(ΔRPS)"` = ?


In fig. BD = 8, BC = 12, B-D-C, then `"A(ΔABC)"/"A(ΔABD)"` = ?


If ΔABC ∼ ΔDEF, length of side AB is 9 cm and length of side DE is 12 cm, then find the ratio of their corresponding areas.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×