हिंदी

The Ratio of the Areas of Two Triangles with the Common Base is 4 : 3. Height of the Larger Triangle is 2 Cm, Then Find the Corresponding Height of the Smaller Triangle. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

The ratio of the areas of two triangles with the common base is 4 : 3. Height of the larger triangle is 2 cm, then find the corresponding height of the smaller triangle.

योग

उत्तर

Let the height of the larger triangle be h1 and that of the smaller triangle be h2.

The ratio of the areas of two triangles with a common base is equal to the ratio of their corresponding heights.

`"Area(larger Triangle)"/"Area(smaller Triangle)"="h"_1/"h"_2`

`4/3=2/"h"_2`

`4xx "h"_2=3xx2`

`therefore"h"_2=(3xx2)/4=6/4`

`therefore"h"_2=1.5" cm"`

The corresponding height of the smaller triangle is 1.5 cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Set A

संबंधित प्रश्न

In the following figure seg AB ⊥ seg BC, seg DC ⊥ seg BC. If AB = 2 and DC = 3, find `(A(triangleABC))/(A(triangleDCB))`


The ratio of the areas of two triangles with the common base is 14 : 9. Height of the larger triangle is 7 cm, then find the corresponding height of the smaller triangle.


The ratio of the areas of two triangles with common base is 6:5. Height of the larger triangle of 9 cm, then find the corresponding height of the smaller triangle.


In the given figure, AD is the bisector of the exterior ∠A of ∆ABC. Seg AD intersects the side BC produced in D. Prove that :

\[\frac{BD}{CD} = \frac{AB}{AC}\]

In the given figure, BC ⊥ AB, AD ⊥ AB, BC = 4, AD = 8, then find `("A"(∆"ABC"))/("A"(∆"ADB"))`


In adjoining figure, PQ ⊥ BC, AD ⊥ BC then find following ratios.

  1. `("A"(∆"PQB"))/("A"(∆"PBC"))`
  2. `("A"(∆"PBC"))/("A"(∆"ABC"))`
  3. `("A"(∆"ABC"))/("A"(∆"ADC"))`
  4. `("A"(∆"ADC"))/("A"(∆"PQC"))`

Ratio of areas of two triangles with equal heights is 2 : 3. If base of the smaller triangle is 6 cm then what is the corresponding base of the bigger triangle ?


In the given figure, ∠ABC = ∠DCB = 90° AB = 6, DC = 8 then `("A(Δ ABC)")/("A(Δ DCB)")` = ?


In the figure, PM = 10 cm, A(∆PQS) = 100 sq.cm, A(∆QRS) = 110 sq. cm, then find NR.


In ∆ABC, B – D – C and BD = 7, BC = 20 then Find following ratio. 

\[\frac{A\left( ∆ ADC \right)}{A\left( ∆ ABC \right)}\] 


If ΔXYZ ~ ΔPQR then `"XY"/"PQ" = "YZ"/"QR"` = ?


Areas of two similar triangles are in the ratio 144: 49. Find the ratio of their corresponding sides.


In fig., AB ⊥ BC and DC ⊥ BC, AB = 6, DC = 4 then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


From adjoining figure, ∠ABC = 90°, ∠DCB = 90°, AB = 6, DC = 8, then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


In ΔABC, B − D − C and BD = 7, BC = 20, then find the following ratio.

(i) `"A(ΔABD)"/"A(ΔADC)"`

(ii) `"A(ΔABD)"/"A(ΔABC)"`

(iii) `"A(ΔADC)"/"A(ΔABC)"`


Prove that, The areas of two triangles with the same height are in proportion to their corresponding bases. To prove this theorem start as follows:

  1. Draw two triangles, give the names of all points, and show heights.
  2. Write 'Given' and 'To prove' from the figure drawn.

In the figure, PQ ⊥ BC, AD ⊥ BC. To find the ratio of A(ΔPQB) and A(ΔPBC), complete the following activity.


Given: PQ ⊥ BC, AD ⊥ BC

Now, A(ΔPQB)  = `1/2 xx square xx square`

A(ΔPBC)  = `1/2 xx square xx square`

Therefore, 

`(A(ΔPQB))/(A(ΔPBC)) = (1/2 xx square xx square)/(1/2 xx square xx square)`

= `square/square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×