हिंदी

In ∆ABC, B – D – C and BD = 7, BC = 20 then Find following ratio. A ( Δ A D C ) A ( Δ A B C ) - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In ∆ABC, B – D – C and BD = 7, BC = 20 then Find following ratio. 

\[\frac{A\left( ∆ ADC \right)}{A\left( ∆ ABC \right)}\] 

योग

उत्तर

Construction: Draw a perpendicular from vertex A to line BC. 

\[\frac{A\left( ∆ ADC \right)}{A\left( ∆ ABC \right)} = \frac{\frac{1}{2} \times AX \times DC}{\frac{1}{2} \times AX \times BC}\]
\[ = \frac{DC}{BC}\]
\[ = \frac{13}{20} \left( \because DC = BC - BD \right)\] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Similarity - Problem Set 1 [पृष्ठ २७]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 1 Similarity
Problem Set 1 | Q 2.3 | पृष्ठ २७

संबंधित प्रश्न

In the following figure RP: PK= 3:2, then find the value of A(ΔTRP):A(ΔTPK).


In the given figure, AD is the bisector of the exterior ∠A of ∆ABC. Seg AD intersects the side BC produced in D. Prove that :

\[\frac{BD}{CD} = \frac{AB}{AC}\]

Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.


In the given figure, BC ⊥ AB, AD ⊥ AB, BC = 4, AD = 8, then find `("A"(∆"ABC"))/("A"(∆"ADB"))`


Ratio of areas of two triangles with equal heights is 2 : 3. If base of the smaller triangle is 6 cm then what is the corresponding base of the bigger triangle ?


In the given figure, ∠ABC = ∠DCB = 90° AB = 6, DC = 8 then `("A(Δ ABC)")/("A(Δ DCB)")` = ?


The ratio of the areas of two triangles with the common base is 4 : 3. Height of the larger triangle is 2 cm, then find the corresponding height of the smaller triangle.


In ∆ABC, B – D – C and BD = 7, BC = 20, then find the following ratio.

`(A(∆ABD))/(A(∆ABC))`


In the given, seg BE ⊥ seg AB and seg BA ⊥ seg AD.

if BE = 6 and AD = 9 find `(A(Δ ABE))/(A(Δ BAD))`.


If ΔXYZ ~ ΔPQR then `"XY"/"PQ" = "YZ"/"QR"` = ?


In fig., TP = 10 cm, PS = 6 cm. `"A(ΔRTP)"/"A(ΔRPS)"` = ?


Ratio of corresponding sides of two similar triangles is 4:7, then find the ratio of their areas = ?


In fig. BD = 8, BC = 12, B-D-C, then `"A(ΔABC)"/"A(ΔABD)"` = ?


In fig., AB ⊥ BC and DC ⊥ BC, AB = 6, DC = 4 then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


From adjoining figure, ∠ABC = 90°, ∠DCB = 90°, AB = 6, DC = 8, then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


In ΔABC, B − D − C and BD = 7, BC = 20, then find the following ratio.

(i) `"A(ΔABD)"/"A(ΔADC)"`

(ii) `"A(ΔABD)"/"A(ΔABC)"`

(iii) `"A(ΔADC)"/"A(ΔABC)"`


Prove that, The areas of two triangles with the same height are in proportion to their corresponding bases. To prove this theorem start as follows:

  1. Draw two triangles, give the names of all points, and show heights.
  2. Write 'Given' and 'To prove' from the figure drawn.

If ΔABC ∼ ΔDEF, length of side AB is 9 cm and length of side DE is 12 cm, then find the ratio of their corresponding areas.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×