हिंदी

Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.

योग

उत्तर १

Let ABC and PQR be two right triangles with AD ⊥ BC and PS ⊥ QR.

BC = 9, AD = 5, PS = 6 and QR = 10.

The ratio of areas of two triangles is equal to the ratio of the products of their bases and corresponding heights.

`("A"(Δ"ABC"))/("A"(Δ"PQR")) = ("AD" × "BC")/("PS" × "QR")`

∴ `("A"(Δ"ABC"))/("A"(Δ"PQR")) = (5 × 9)/(6 × 10)`

∴ `("A"(Δ"ABC"))/("A"(Δ"PQR")) = 3/4`

Hence, Ratio of Area of △ABC : Area of △PQR = 3 : 4.

shaalaa.com

उत्तर २

Let the base, height, and area of the first triangle be b1, h1, and A1 respectively. Let the base, height and area of the second triangle be b2, h2, and A2 respectively.

b1 = 9, h1 = 5, b2 = 10 and h2 = 6.

The ratio of areas of two triangles is equal to the ratio of the products of their bases and corresponding heights.

`("A"_1)/("A"_2) = ("b"_1 × "h"_1)/("b"_2 × "h"_2)`

∴ `("A"_1)/("A"_2) = (9 × 5)/(10 × 6)`

∴ `("A"_1)/("A"_2) = 3/4`

The ratio of the areas of the triangles is 3 : 4.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Similarity - Practice Set 1.1 [पृष्ठ ५]

संबंधित प्रश्न

In the following figure seg AB ⊥ seg BC, seg DC ⊥ seg BC. If AB = 2 and DC = 3, find `(A(triangleABC))/(A(triangleDCB))`


The ratio of the areas of two triangles with the common base is 14 : 9. Height of the larger triangle is 7 cm, then find the corresponding height of the smaller triangle.


In the given figure, AD is the bisector of the exterior ∠A of ∆ABC. Seg AD intersects the side BC produced in D. Prove that :

\[\frac{BD}{CD} = \frac{AB}{AC}\]

In the given figure, BC ⊥ AB, AD ⊥ AB, BC = 4, AD = 8, then find `("A"(∆"ABC"))/("A"(∆"ADB"))`


In trapezium ABCD, side AB || side DC, diagonals AC and BD intersect in point O. If AB = 20, DC = 6, OB = 15 then Find OD. 


In ∆ABC, B - D - C and BD = 7, BC = 20 then find following ratio. 

`"A(∆ ABD)"/"A(∆ ADC)"`


In the given figure, ∠ABC = ∠DCB = 90° AB = 6, DC = 8 then `("A(Δ ABC)")/("A(Δ DCB)")` = ?


In the figure, PM = 10 cm, A(∆PQS) = 100 sq.cm, A(∆QRS) = 110 sq. cm, then find NR.


The ratio of the areas of two triangles with the common base is 4 : 3. Height of the larger triangle is 2 cm, then find the corresponding height of the smaller triangle.


In ∆ABC, B – D – C and BD = 7, BC = 20 then Find following ratio. 

\[\frac{A\left( ∆ ADC \right)}{A\left( ∆ ABC \right)}\] 


If ΔXYZ ~ ΔPQR then `"XY"/"PQ" = "YZ"/"QR"` = ?


Areas of two similar triangles are in the ratio 144: 49. Find the ratio of their corresponding sides.


Ratio of corresponding sides of two similar triangles is 4:7, then find the ratio of their areas = ?


In fig., PM = 10 cm, A(ΔPQS) = 100 sq.cm, A(ΔQRS) = 110 sq.cm, then NR?

ΔPQS and ΔQRS having seg QS common base.

Areas of two triangles whose base is common are in proportion of their corresponding [______]

`("A"("PQS"))/("A"("QRS")) = (["______"])/"NR"`,

`100/110 = (["______"])/"NR"`,

NR = [ ______ ] cm


In fig., AB ⊥ BC and DC ⊥ BC, AB = 6, DC = 4 then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


From adjoining figure, ∠ABC = 90°, ∠DCB = 90°, AB = 6, DC = 8, then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


Prove that, The areas of two triangles with the same height are in proportion to their corresponding bases. To prove this theorem start as follows:

  1. Draw two triangles, give the names of all points, and show heights.
  2. Write 'Given' and 'To prove' from the figure drawn.

In the figure, PQ ⊥ BC, AD ⊥ BC. To find the ratio of A(ΔPQB) and A(ΔPBC), complete the following activity.


Given: PQ ⊥ BC, AD ⊥ BC

Now, A(ΔPQB)  = `1/2 xx square xx square`

A(ΔPBC)  = `1/2 xx square xx square`

Therefore, 

`(A(ΔPQB))/(A(ΔPBC)) = (1/2 xx square xx square)/(1/2 xx square xx square)`

= `square/square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×