हिंदी

In the following figure seg AB ⊥ seg BC, seg DC ⊥ seg BC. If AB = 2 and DC = 3, find A(△ABC)/A(△DCB) - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In the following figure seg AB ⊥ seg BC, seg DC ⊥ seg BC. If AB = 2 and DC = 3, find `(A(triangleABC))/(A(triangleDCB))`

उत्तर

In the following figure ΔABC and ΔDCB have a comman base BC.

`therefore(A(triangleABC))/(A(triangleDCB))=(AB)/(DC)`

(∵The ratio of areas of two triangles with the same base is equal to the ratio of their corresponding heights.)

`therefore(A(triangleABC))/(A(triangleDCB))=2/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Set B

संबंधित प्रश्न

In the following figure RP: PK= 3:2, then find the value of A(ΔTRP):A(ΔTPK).


In the given figure, AD is the bisector of the exterior ∠A of ∆ABC. Seg AD intersects the side BC produced in D. Prove that :

\[\frac{BD}{CD} = \frac{AB}{AC}\]

In the given figure, BC ⊥ AB, AD ⊥ AB, BC = 4, AD = 8, then find `("A"(∆"ABC"))/("A"(∆"ADB"))`


In adjoining figure, PQ ⊥ BC, AD ⊥ BC then find following ratios.

  1. `("A"(∆"PQB"))/("A"(∆"PBC"))`
  2. `("A"(∆"PBC"))/("A"(∆"ABC"))`
  3. `("A"(∆"ABC"))/("A"(∆"ADC"))`
  4. `("A"(∆"ADC"))/("A"(∆"PQC"))`

In trapezium ABCD, side AB || side DC, diagonals AC and BD intersect in point O. If AB = 20, DC = 6, OB = 15 then Find OD. 


In ∆ABC, B - D - C and BD = 7, BC = 20 then find following ratio. 

`"A(∆ ABD)"/"A(∆ ADC)"`


In the figure, PM = 10 cm, A(∆PQS) = 100 sq.cm, A(∆QRS) = 110 sq. cm, then find NR.


In the given, seg BE ⊥ seg AB and seg BA ⊥ seg AD.

if BE = 6 and AD = 9 find `(A(Δ ABE))/(A(Δ BAD))`.


A roller of diameter 0.9 m and the length 1.8 m is used to press the ground. Find the area of the ground pressed by it in 500 revolutions.
`(pi=3.14)`


If ΔXYZ ~ ΔPQR then `"XY"/"PQ" = "YZ"/"QR"` = ?


In fig., TP = 10 cm, PS = 6 cm. `"A(ΔRTP)"/"A(ΔRPS)"` = ?


In fig. BD = 8, BC = 12, B-D-C, then `"A(ΔABC)"/"A(ΔABD)"` = ?


In fig., PM = 10 cm, A(ΔPQS) = 100 sq.cm, A(ΔQRS) = 110 sq.cm, then NR?

ΔPQS and ΔQRS having seg QS common base.

Areas of two triangles whose base is common are in proportion of their corresponding [______]

`("A"("PQS"))/("A"("QRS")) = (["______"])/"NR"`,

`100/110 = (["______"])/"NR"`,

NR = [ ______ ] cm


In fig., AB ⊥ BC and DC ⊥ BC, AB = 6, DC = 4 then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


From adjoining figure, ∠ABC = 90°, ∠DCB = 90°, AB = 6, DC = 8, then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


Prove that, The areas of two triangles with the same height are in proportion to their corresponding bases. To prove this theorem start as follows:

  1. Draw two triangles, give the names of all points, and show heights.
  2. Write 'Given' and 'To prove' from the figure drawn.

If ΔABC ∼ ΔDEF, length of side AB is 9 cm and length of side DE is 12 cm, then find the ratio of their corresponding areas.


In the figure, PQ ⊥ BC, AD ⊥ BC. To find the ratio of A(ΔPQB) and A(ΔPBC), complete the following activity.


Given: PQ ⊥ BC, AD ⊥ BC

Now, A(ΔPQB)  = `1/2 xx square xx square`

A(ΔPBC)  = `1/2 xx square xx square`

Therefore, 

`(A(ΔPQB))/(A(ΔPBC)) = (1/2 xx square xx square)/(1/2 xx square xx square)`

= `square/square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×