English

In the following figure seg AB ⊥ seg BC, seg DC ⊥ seg BC. If AB = 2 and DC = 3, find A(△ABC)/A(△DCB) - Geometry Mathematics 2

Advertisements
Advertisements

Question

In the following figure seg AB ⊥ seg BC, seg DC ⊥ seg BC. If AB = 2 and DC = 3, find `(A(triangleABC))/(A(triangleDCB))`

Solution

In the following figure ΔABC and ΔDCB have a comman base BC.

`therefore(A(triangleABC))/(A(triangleDCB))=(AB)/(DC)`

(∵The ratio of areas of two triangles with the same base is equal to the ratio of their corresponding heights.)

`therefore(A(triangleABC))/(A(triangleDCB))=2/3`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Set B

RELATED QUESTIONS

The ratio of the areas of two triangles with common base is 6:5. Height of the larger triangle of 9 cm, then find the corresponding height of the smaller triangle.


In the given figure, AD is the bisector of the exterior ∠A of ∆ABC. Seg AD intersects the side BC produced in D. Prove that :

\[\frac{BD}{CD} = \frac{AB}{AC}\]

Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.


In trapezium ABCD, side AB || side DC, diagonals AC and BD intersect in point O. If AB = 20, DC = 6, OB = 15 then Find OD. 


In ∆ABC, B - D - C and BD = 7, BC = 20 then find following ratio. 

`"A(∆ ABD)"/"A(∆ ADC)"`


Ratio of areas of two triangles with equal heights is 2 : 3. If base of the smaller triangle is 6 cm then what is the corresponding base of the bigger triangle ?


The ratio of the areas of two triangles with the common base is 4 : 3. Height of the larger triangle is 2 cm, then find the corresponding height of the smaller triangle.


In ∆ABC, B – D – C and BD = 7, BC = 20, then find the following ratio.

`(A(∆ABD))/(A(∆ABC))`


In the given, seg BE ⊥ seg AB and seg BA ⊥ seg AD.

if BE = 6 and AD = 9 find `(A(Δ ABE))/(A(Δ BAD))`.


A roller of diameter 0.9 m and the length 1.8 m is used to press the ground. Find the area of the ground pressed by it in 500 revolutions.
`(pi=3.14)`


Areas of two similar triangles are in the ratio 144: 49. Find the ratio of their corresponding sides.


In fig. BD = 8, BC = 12, B-D-C, then `"A(ΔABC)"/"A(ΔABD)"` = ?


In fig., AB ⊥ BC and DC ⊥ BC, AB = 6, DC = 4 then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


From adjoining figure, ∠ABC = 90°, ∠DCB = 90°, AB = 6, DC = 8, then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


In ΔABC, B − D − C and BD = 7, BC = 20, then find the following ratio.

(i) `"A(ΔABD)"/"A(ΔADC)"`

(ii) `"A(ΔABD)"/"A(ΔABC)"`

(iii) `"A(ΔADC)"/"A(ΔABC)"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×